INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden.
Neuroimage. 2019 Nov 15;202:116120. doi: 10.1016/j.neuroimage.2019.116120. Epub 2019 Aug 27.
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation. Under the assumption of negligible water exchange between compartments, the time-dependent apparent diffusion coefficient can be directly computed from the solution of a diffusion equation subject to a time-dependent Neumann boundary condition. This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used 1) to solve the Bloch-Torrey partial differential equation in order to simulate the diffusion magnetic resonance imaging signal; 2) to solve a diffusion partial differential equation to obtain directly the apparent diffusion coefficient; 3) to compare the simulated apparent diffusion coefficient with a short-time approximation formula. The partial differential equations are solved by P1 finite elements combined with built-in MATLAB routines for solving ordinary differential equations. The finite element mesh generation is performed using an external package called Tetgen. SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical cells with a myelin layer; 3) an extra-cellular space enclosed either a) in a box or b) in a tight wrapping around the cells; 4) deformation of canonical cells by bending and twisting; 5) permeable membranes; Built-in diffusion-encoding pulse sequences include the Pulsed Gradient Spin Echo and the Oscillating Gradient Spin Echo. We describe in detail how to use the SpinDoctor toolbox. We validate SpinDoctor simulations using reference signals computed by the Matrix Formalism method. We compare the accuracy and computational time of SpinDoctor simulations with Monte-Carlo simulations and show significant speed-up of SpinDoctor over Monte-Carlo simulations in complex geometries. We also illustrate several extensions of SpinDoctor functionalities, including the incorporation of T relaxation, the simulation of non-standard diffusion-encoding sequences, as well as the use of externally generated geometrical meshes.
复杂的横向水质子磁化在扩散编码磁场梯度脉冲在非均相介质中可以通过多个隔室 Bloch-Torrey 偏微分方程来建模。在隔间之间的水交换可以忽略不计的假设下,可以直接从扩散方程的解计算随时间变化的表观扩散系数,并受到随时间变化的 Neumann 边界条件的限制。本文描述了一个名为 SpinDoctor 的公共可用的 MATLAB 工具箱,该工具箱可用于:1)求解 Bloch-Torrey 偏微分方程,以模拟扩散磁共振成像信号;2)求解扩散偏微分方程,以直接获得表观扩散系数;3)将模拟的表观扩散系数与短时间近似公式进行比较。偏微分方程通过 P1 有限元与内置的求解常微分方程的 MATLAB 例程相结合进行求解。有限元网格生成使用称为 Tetgen 的外部包完成。SpinDoctor 提供了内置选项,包括 1)带有核的球形细胞;2)带有髓鞘层的圆柱形细胞;3)包围在 a)盒子或 b)紧密包裹在细胞周围的细胞外空间;4)通过弯曲和扭曲对规范细胞进行变形;5)可渗透的膜;内置的扩散编码脉冲序列包括脉冲梯度自旋回波和振荡梯度自旋回波。我们详细描述了如何使用 SpinDoctor 工具箱。我们使用矩阵形式方法计算的参考信号验证 SpinDoctor 模拟的准确性。我们比较了 SpinDoctor 模拟的准确性和计算时间与蒙特卡罗模拟的准确性和计算时间,并表明 SpinDoctor 在复杂几何形状下的计算速度比蒙特卡罗模拟有显著提高。我们还说明了 SpinDoctor 功能的几个扩展,包括 T 弛豫的纳入、非标准扩散编码序列的模拟以及外部生成的几何网格的使用。