Nano-Bioanalysis Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan.
Chem Soc Rev. 2017 Jul 3;46(13):3904-3921. doi: 10.1039/c7cs00155j.
The purpose of this tutorial review is to provide a comprehensive explanation of plasmon-enhanced spectroscopies, such as plasmon-enhanced Raman scattering, fluorescence, absorption, Rayleigh scattering, and hyper Raman scattering. Plasmon-enhanced spectroscopy implies the spectroscopy of enhanced optical responses of molecules in close proximity to plasmonic nanostructures, resulting in a strong enhancement in sensitivity. In this review, we explain the enhancement in plasmon-enhanced spectroscopy as an optical response of a molecule interacting with an optical resonator, which represents a plasmonic nanostructure, in analogy to cavity quantum optics to easily understand all types of plasmon-enhanced spectroscopy in the same manner. The keys to understanding the enhancement factor of each plasmon-enhanced spectroscopy are a quality factor and a mode volume of plasmonic resonators, which are well-known parameters in the Purcell effect of standard optical cavity resonators.
本教程综述的目的是对等离子体增强光谱学进行全面解释,如等离子体增强拉曼散射、荧光、吸收、瑞利散射和超拉曼散射。等离子体增强光谱学意味着靠近等离子体纳米结构的分子的光学响应增强的光谱学,从而导致灵敏度的大幅增强。在本综述中,我们将等离子体增强光谱学的增强解释为分子与光学谐振器相互作用的光学响应,该光学谐振器代表等离子体纳米结构,类似于腔量子光学,以便以相同的方式轻松理解各种类型的等离子体增强光谱学。理解每种等离子体增强光谱学增强因子的关键是等离子体谐振器的品质因数和模式体积,这些参数在标准光学腔谐振器的普塞尔效应中是众所周知的。