Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich, UK.
Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9440-9444. doi: 10.1002/anie.201705010. Epub 2017 Jul 12.
Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways.
植物从单一生物合成中间体创造出巨大的化学多样性。在植物衍生的阿马兰生物碱途径中,生物合成中间体vomilenine 可以转化为抗心律失常化合物 ajmaline,或者可以异构化为具有结构上不同支架的生物碱 perakine。在这里,我们报告了 vinorine 羟化酶的发现和表征,vinorine 羟化酶是一种细胞色素 P450 酶,它将 vinorine 羟基化为 vomilenine,发现它以快速互变异构表异构体的混合物形式存在。令人惊讶的是,这种细胞色素 P450 还催化 ajmaline 前体 vomilenine 向 perakine 的非氧化异构化。vinorine 羟化酶的这种不寻常的双重催化活性为这些生物碱途径分支的分叉提供了一种控制机制。这一发现强调了植物途径中进化出的不寻常的催化功能。