Suppr超能文献

细胞色素 P450 的双重催化活性控制了蛇根生物碱生物合成代谢分支点的分岔。

Dual Catalytic Activity of a Cytochrome P450 Controls Bifurcation at a Metabolic Branch Point of Alkaloid Biosynthesis in Rauwolfia serpentina.

机构信息

Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich, UK.

出版信息

Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9440-9444. doi: 10.1002/anie.201705010. Epub 2017 Jul 12.

Abstract

Plants create tremendous chemical diversity from a single biosynthetic intermediate. In plant-derived ajmalan alkaloid pathways, the biosynthetic intermediate vomilenine can be transformed into the anti-arrhythmic compound ajmaline, or alternatively, can isomerize to form perakine, an alkaloid with a structurally distinct scaffold. Here we report the discovery and characterization of vinorine hydroxylase, a cytochrome P450 enzyme that hydroxylates vinorine to form vomilenine, which was found to exist as a mixture of rapidly interconverting epimers. Surprisingly, this cytochrome P450 also catalyzes the non-oxidative isomerization of the ajmaline precursor vomilenine to perakine. This unusual dual catalytic activity of vinorine hydroxylase thereby provides a control mechanism for the bifurcation of these alkaloid pathway branches. This discovery highlights the unusual catalytic functionality that has evolved in plant pathways.

摘要

植物从单一生物合成中间体创造出巨大的化学多样性。在植物衍生的阿马兰生物碱途径中,生物合成中间体vomilenine 可以转化为抗心律失常化合物 ajmaline,或者可以异构化为具有结构上不同支架的生物碱 perakine。在这里,我们报告了 vinorine 羟化酶的发现和表征,vinorine 羟化酶是一种细胞色素 P450 酶,它将 vinorine 羟基化为 vomilenine,发现它以快速互变异构表异构体的混合物形式存在。令人惊讶的是,这种细胞色素 P450 还催化 ajmaline 前体 vomilenine 向 perakine 的非氧化异构化。vinorine 羟化酶的这种不寻常的双重催化活性为这些生物碱途径分支的分叉提供了一种控制机制。这一发现强调了植物途径中进化出的不寻常的催化功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e768/5582599/3642412b9ba3/ANIE-56-9440-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验