Suppr超能文献

对萨帕甘和阿库铵类生物碱生物合成的立体化学见解。

Stereochemical insights into sarpagan and akuammiline alkaloid biosynthesis.

作者信息

Mann Scott Galeung Alexander, Paz-Galeano Melina, Shahsavarani Mohammadamin, Perley Jacob Owen, Guo Jun, Garza-Garcia Jorge Jonathan Oswaldo, Qu Yang

机构信息

Department of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.

出版信息

New Phytol. 2025 Aug;247(3):1335-1351. doi: 10.1111/nph.70272. Epub 2025 Jun 3.

Abstract

Sarpagan and akuammiline monoterpenoid indole alkaloids (MIAs) are a class of bioactive plant-derived compounds with significant pharmaceutical potential. These alkaloids are formed through oxidative cyclization of geissoschizine, catalyzed by homologous cytochrome P450 monooxygenases (CYP) known as sarpagan bridge enzymes (SBEs) and rhazimal synthases (RHSs). However, a long-standing discrepancy exists between the expected C16 stereochemistry of enzymatic products and the stereochemistry of naturally occurring derivatives. This study investigates C16 stereochemistry outcomes after geissoschizine cyclization and subsequent enzymatic transformations in six MIA-producing species. We combine comparative gene discovery, in planta gene silencing of Catharanthus roseus SBE, in vitro enzyme characterization, and intermediate nuclear magnetic resonance analysis. We identify and characterize five new CYPs and a new akuammidine aldehyde reductase alongside two known enzymes from Alstonia scholaris, Amsonia tabernaemontana, Catharanthus roseus, Rauvolfia serpentina, Tabernaemontana elegans, and Vinca minor. RHS enzymes consistently produce the 16R rhazimal stereoisomer. SBEs likely yield 16R polyneuridine aldehyde and, to a lesser extent, its 16S epimer akuammidine aldehyde. Downstream aldehyde reductases, deformylases, and decarbomethoxylases further epimerize C16, generating species-specific stereochemical diversity. This work demonstrates the enzymatic tailoring steps that govern C16 stereochemistry in sarpagan MIA biosynthesis, offering new insight into stereochemical diversification and pathway evolution in plant specialized metabolism.

摘要

蛇根碱和阿枯米灵单萜吲哚生物碱(MIAs)是一类具有重要药用潜力的生物活性植物源化合物。这些生物碱是通过格伊索辛的氧化环化形成的,由被称为蛇根碱桥酶(SBEs)和拉齐马合酶(RHSs)的同源细胞色素P450单加氧酶(CYP)催化。然而,酶促产物预期的C16立体化学与天然存在的衍生物的立体化学之间长期存在差异。本研究调查了六种产生MIAs的物种中格伊索辛环化及后续酶促转化后的C16立体化学结果。我们结合了比较基因发现、长春花SBE的植物体内基因沉默、体外酶特性分析和中间体核磁共振分析。我们鉴定并表征了五种新的CYP和一种新的阿枯米定醛还原酶,以及来自印度萝芙木、北美水甘草、长春花、蛇根木、秀丽狗牙花和小蔓长春花的两种已知酶。RHS酶始终产生16R拉齐马立体异构体。SBEs可能产生16R多聚神经氨酸醛,并在较小程度上产生其16S差向异构体阿枯米定醛。下游的醛还原酶、脱甲酰酶和脱甲氧羰基酶进一步使C16差向异构化,产生物种特异性的立体化学多样性。这项工作展示了在蛇根碱MIA生物合成中控制C16立体化学的酶促修饰步骤,为植物特殊代谢中的立体化学多样化和途径进化提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验