Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain.
Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata" via della Ricerca Scientifica 1 , 00133 Roma, Italy.
Nano Lett. 2017 Aug 9;17(8):4753-4758. doi: 10.1021/acs.nanolett.7b01441. Epub 2017 Jul 3.
Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.
近年来,纳米线的合成生长取得了进展,使人们能够获得在块状体中仅在极端压力条件下才能观察到的晶体相。在这里,我们使用基于密度泛函理论和多体微扰理论的第一性原理方法表明,适当混合六方硅和六方锗可以产生具有光允许跃迁的直接带隙。将计算出的辐射寿命与非辐射复合机制的典型值进行比较表明,光发射将是主要的复合机制。这些发现为开发基于硅的光电设备铺平了道路,迄今为止,立方硅的光发射效率低下一直阻碍着这一领域的发展。