van Lange Victor T, Dijkstra Alain, Fadaly Elham M T, Peeters Wouter H J, van Tilburg Marvin A J, Bakkers Erik P A M, Bechstedt Friedhelm, Finley Jonathan J, Haverkort Jos E M
Eindhoven University of Technology, Department of Applied Physics, Groene Loper 19, Eindhoven, 5612AP, The Netherlands.
Physik Department and Walter-Schottky-Institut, Technische Universität München, Am Coulombwall 4, Garching, D-85748, Germany.
ACS Photonics. 2024 Sep 30;11(10):4258-4267. doi: 10.1021/acsphotonics.4c01135. eCollection 2024 Oct 16.
Hexagonal Si Ge with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si Ge , where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si Ge nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher-Stern-Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.
具有合适合金成分的六角形硅锗有望成为一种新型的与硅兼容的直接带隙半导体家族。然而,理论计算预测,该家族的二元端点——块状六方锗晶体,仅有微弱的偶极活性。这与六方硅锗形成对比,在六方硅锗中,合金无序破坏了平移对称性,从而允许高效发光。令人惊讶的是,我们观察到六方锗中的辐射复合与六方硅锗纳米线中的一样强烈,但迄今为止,对六方锗的辐射寿命和光学跃迁矩阵元的详细实验仍未开展。在此,我们报告了一种先进的谱线形状分析方法,该方法利用拉舍尔 - 斯特恩 - 武费尔(LSW)模型,对覆盖3个数量级的六方锗纳米线光致发光光谱的激发密度系列进行分析。该分析是在低温下进行的,此时辐射复合占主导。我们分析光致带填充量以直接获取激发载流子密度,通过使载流子产生率和复合率相等,从而提取出(2.1±0.3)纳秒的辐射寿命。此外,我们利用LSW模型独立提取出10.5±0.9的高振子强度,这与砷化镓或氮化镓等III/V族半导体的振子强度相当,表明六方锗纳米结构的光学性质非常适合广泛的光电器件应用。