Suppr超能文献

预测动机:PFC 的计算模型可以解释健康和疾病中动机的神经编码和基于努力的决策。

Predicting Motivation: Computational Models of PFC Can Explain Neural Coding of Motivation and Effort-based Decision-making in Health and Disease.

机构信息

Radboud University Nijmegen.

Ghent University.

出版信息

J Cogn Neurosci. 2017 Oct;29(10):1633-1645. doi: 10.1162/jocn_a_01160. Epub 2017 Jun 27.

Abstract

Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.

摘要

人类行为强烈地受到追求奖励的驱使。然而,在日常生活中,收益大多需要付出代价,通常需要付出努力才能获得潜在的收益。内侧前额叶皮层(MPFC)和背外侧前额叶皮层(DLPFC)经常被牵涉到对努力控制的预期中,表现出随着预测任务难度的增加而增加的活动。这种活动与奖励预期部分重叠,在决策过程中和任务准备过程中都有观察到。最近,基于预测和预测误差的原理,已经开发出了新的计算框架来解释这些区域在认知控制过程中的活动,包括预测反应-结果(PRO)模型[Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011]和分层错误表示(HER)模型[Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]。尽管这些模型具有广泛的解释力,但尚不清楚它们是否也能适应在 MPFC 和 DLPFC 中观察到的与努力预期相关的影响。在这里,我们提出将这些计算框架转化为基于努力的行为领域。首先,我们讨论了基于预测误差的 PRO 模型如何通过在预测性环境中重新定义基于努力的行为来解释 MPFC 中与努力相关的活动。我们提出,MPFC 活动反映了对动机相关变量(如努力和奖励)的监测,通过对这些期望和期望差异进行编码。此外,我们为健康对照组和有动机障碍的临床人群推导了基于行为和神经模型的预测。其次,我们说明了基于 HER 模型的努力行为的可能转化,HER 模型是基于分层错误预测的 PRO 模型的扩展版本,用于解释 MPFC-DLPFC 相互作用。我们推导出了行为预测,描述了努力和奖励信息在 PFC 中的编码方式,以及改变这种环境信息的配置如何影响涉及动机的决策和任务表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验