Suppr超能文献

目标和干扰物的正交神经编码支持多元认知控制。

Orthogonal neural encoding of targets and distractors supports multivariate cognitive control.

机构信息

Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA.

Carney Institute for Brain Science, Brown University, Providence, RI, USA.

出版信息

Nat Hum Behav. 2024 May;8(5):945-961. doi: 10.1038/s41562-024-01826-7. Epub 2024 Mar 8.

Abstract

The complex challenges of our mental life require us to coordinate multiple forms of neural information processing. Recent behavioural studies have found that people can coordinate multiple forms of attention, but the underlying neural control process remains obscure. We hypothesized that the brain implements multivariate control by independently monitoring feature-specific difficulty and independently prioritizing feature-specific processing. During functional MRI, participants performed a parametric conflict task that separately tags target and distractor processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially segregated encoding of target and distractor difficulty in the dorsal anterior cingulate cortex. Consistent with feature-specific attentional priority, our encoding geometry analysis revealed overlapping but orthogonal representations of target and distractor coherence in the intraparietal sulcus. Coherence representations were mediated by control demands and aligned with both performance and frontoparietal activity, consistent with top-down attention. Together, these findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive control.

摘要

我们的心理生活面临着复杂的挑战,需要协调多种形式的神经信息处理。最近的行为研究发现,人们可以协调多种形式的注意力,但潜在的神经控制过程仍不清楚。我们假设大脑通过独立监测特征特异性难度和独立优先处理特征特异性信息来实现多变量控制。在功能磁共振成像期间,参与者执行了一个参数冲突任务,该任务分别标记目标和干扰处理。与特征特异性监测一致,单变量分析显示在背侧前扣带皮层中存在目标和干扰难度的空间分离编码。与特征特异性注意力优先级一致,我们的编码几何分析显示在顶内沟中存在目标和干扰相干性的重叠但正交表示。相干性表示受控制需求的影响,并与绩效和额顶叶活动一致,与自上而下的注意力一致。总的来说,这些发现为协调多变量认知控制所需的神经几何结构提供了证据。

相似文献

1
Orthogonal neural encoding of targets and distractors supports multivariate cognitive control.
Nat Hum Behav. 2024 May;8(5):945-961. doi: 10.1038/s41562-024-01826-7. Epub 2024 Mar 8.
2
Neural conflict-control mechanisms improve memory for target stimuli.
Cereb Cortex. 2015 Mar;25(3):833-43. doi: 10.1093/cercor/bht283. Epub 2013 Oct 9.
4
Probing the Neural Mechanisms for Distractor Filtering and Their History-Contingent Modulation by Means of TMS.
J Neurosci. 2019 Sep 18;39(38):7591-7603. doi: 10.1523/JNEUROSCI.2740-18.2019. Epub 2019 Aug 6.
5
Neural evidence for attentional capture by salient distractors.
Nat Hum Behav. 2024 May;8(5):932-944. doi: 10.1038/s41562-024-01852-5. Epub 2024 Mar 27.
7
Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
J Cogn Neurosci. 2017 Jul;29(7):1212-1225. doi: 10.1162/jocn_a_01112. Epub 2017 Mar 2.
8
Cognitive Effort Modulates Connectivity between Dorsal Anterior Cingulate Cortex and Task-Relevant Cortical Areas.
J Neurosci. 2020 May 6;40(19):3838-3848. doi: 10.1523/JNEUROSCI.2948-19.2020. Epub 2020 Apr 9.
9
Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.

引用本文的文献

1
Practice reshapes the geometry and dynamics of task-tailored representations.
Cereb Cortex. 2025 Aug 1;35(8). doi: 10.1093/cercor/bhaf125.
3
Novel Verbal Instructions Recruit Abstract Neural Patterns of Time-Variable Information Dimensionality.
J Neurosci. 2025 Apr 23;45(17):e1964242025. doi: 10.1523/JNEUROSCI.1964-24.2025.
4
An image-computable model of speeded decision-making.
Elife. 2025 Feb 28;13:RP98351. doi: 10.7554/eLife.98351.
8
Measuring Stimulus Information Transfer Between Neural Populations through the Communication Subspace.
bioRxiv. 2024 Nov 7:2024.11.06.622283. doi: 10.1101/2024.11.06.622283.
10
Humans actively reconfigure neural task states.
bioRxiv. 2025 Feb 28:2024.09.29.615736. doi: 10.1101/2024.09.29.615736.

本文引用的文献

1
The response time paradox in functional magnetic resonance imaging analyses.
Nat Hum Behav. 2024 Feb;8(2):349-360. doi: 10.1038/s41562-023-01760-0. Epub 2023 Nov 23.
2
Humans reconfigure target and distractor processing to address distinct task demands.
Psychol Rev. 2024 Mar;131(2):349-372. doi: 10.1037/rev0000442. Epub 2023 Sep 4.
3
A Multi-Dataset Evaluation of Frame Censoring for Motion Correction in Task-Based fMRI.
Apert Neuro. 2022;2:1-25. doi: 10.52294/apertureneuro.2022.2.nxor2026.
5
The geometry of domain-general performance monitoring in the human medial frontal cortex.
Science. 2022 May 6;376(6593):eabm9922. doi: 10.1126/science.abm9922.
6
Parametric Cognitive Load Reveals Hidden Costs in the Neural Processing of Perfectly Intelligible Degraded Speech.
J Neurosci. 2022 Jun 8;42(23):4619-4628. doi: 10.1523/JNEUROSCI.1777-21.2022. Epub 2022 May 4.
7
Priority coding in the visual system.
Nat Rev Neurosci. 2022 Jun;23(6):376-388. doi: 10.1038/s41583-022-00582-9. Epub 2022 Apr 11.
8
Orthogonal representations for robust context-dependent task performance in brains and neural networks.
Neuron. 2022 Apr 6;110(7):1258-1270.e11. doi: 10.1016/j.neuron.2022.01.005. Epub 2022 Jan 31.
9
Cognitive Control as a Multivariate Optimization Problem.
J Cogn Neurosci. 2022 Mar 5;34(4):569-591. doi: 10.1162/jocn_a_01822.
10
Dissociable influences of reward and punishment on adaptive cognitive control.
PLoS Comput Biol. 2021 Dec 28;17(12):e1009737. doi: 10.1371/journal.pcbi.1009737. eCollection 2021 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验