Suppr超能文献

阿尔茨海默病患者大脑中的全转录组piRNA分析

Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease.

作者信息

Qiu Wenying, Guo Xiaoyun, Lin Xiandong, Yang Qian, Zhang Wanying, Zhang Yong, Zuo Lingjun, Zhu Yong, Li Chiang-Shan R, Ma Chao, Luo Xingguang

机构信息

Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Shanghai Mental Health Center, Shanghai, China.

出版信息

Neurobiol Aging. 2017 Sep;57:170-177. doi: 10.1016/j.neurobiolaging.2017.05.020. Epub 2017 Jun 3.

Abstract

Discovered in the brains of multiple animal species, piRNAs may contribute to the pathogenesis of neuropsychiatric illnesses. The present study aimed to identify brain piRNAs across transcriptome that are associated with Alzheimer's disease (AD). Prefrontal cortical tissues of 6 AD cases and 6 controls were examined for piRNA expression levels using an Arraystar HG19 piRNA array (containing 23,677 piRNAs) and genotyped for 17 genome-wide significant and replicated risk SNPs. We examined whether piRNAs are expressed differently between AD cases and controls and explored the potential regulatory effects of risk SNPs on piRNA expression levels. We identified a total of 9453 piRNAs in human brains, with 103 nominally (p < 0.05) differentially (>1.5 fold) expressed in AD cases versus controls and most of the 103 piRNAs nominally correlated with genome-wide significant risk SNPs. We conclude that piRNAs are abundant in human brains and may represent risk biomarkers of AD.

摘要

在多种动物物种的大脑中发现的piRNA可能与神经精神疾病的发病机制有关。本研究旨在鉴定转录组中与阿尔茨海默病(AD)相关的脑piRNA。使用Arraystar HG19 piRNA阵列(包含23,677个piRNA)检测6例AD病例和6例对照的前额叶皮质组织中piRNA的表达水平,并对17个全基因组显著且重复的风险单核苷酸多态性(SNP)进行基因分型。我们研究了AD病例和对照之间piRNA的表达是否存在差异,并探讨了风险SNP对piRNA表达水平的潜在调控作用。我们在人类大脑中总共鉴定出9453个piRNA,其中103个在AD病例与对照中名义上(p < 0.05)差异表达(>1.5倍),并且这103个piRNA中的大多数名义上与全基因组显著的风险SNP相关。我们得出结论,piRNA在人类大脑中丰富存在,可能代表AD的风险生物标志物。

相似文献

1
Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease.
Neurobiol Aging. 2017 Sep;57:170-177. doi: 10.1016/j.neurobiolaging.2017.05.020. Epub 2017 Jun 3.
2
Transcriptome‑wide piRNA profiling in human gastric cancer.
Oncol Rep. 2019 May;41(5):3089-3099. doi: 10.3892/or.2019.7073. Epub 2019 Mar 18.
3
Genome-wide significant, replicated and functional risk variants for Alzheimer's disease.
J Neural Transm (Vienna). 2017 Nov;124(11):1455-1471. doi: 10.1007/s00702-017-1773-0. Epub 2017 Aug 2.
6
Chromosome 19p in Alzheimer's disease: when genome meets transcriptome.
J Alzheimers Dis. 2014;38(2):245-50. doi: 10.3233/JAD-130917.
7
Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms.
Hum Genet. 2021 Apr;140(4):609-623. doi: 10.1007/s00439-020-02230-7. Epub 2020 Nov 2.
8
HPV status is associated with altered PIWI-interacting RNA expression pattern in head and neck cancer.
Oral Oncol. 2016 Apr;55:43-48. doi: 10.1016/j.oraloncology.2016.01.012. Epub 2016 Feb 4.
9
RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains.
Dis Markers. 2014;2014:123165. doi: 10.1155/2014/123165. Epub 2014 Dec 8.
10
PIWI-Interacting RNAs in Gliomagenesis: Evidence from Post-GWAS and Functional Analyses.
Cancer Epidemiol Biomarkers Prev. 2016 Jul;25(7):1073-80. doi: 10.1158/1055-9965.EPI-16-0047. Epub 2016 May 13.

引用本文的文献

2
3
piRNA/PIWI pathways and epigenetic crosstalk in human diseases: Molecular insights into HIV-1 infection and drugs of abuse.
Mol Ther Nucleic Acids. 2025 Feb 1;36(1):102473. doi: 10.1016/j.omtn.2025.102473. eCollection 2025 Mar 11.
4
An Update on Neuroaging on Earth and in Spaceflight.
Int J Mol Sci. 2025 Feb 18;26(4):1738. doi: 10.3390/ijms26041738.
5
Hallmarks of Brain Plasticity.
Biomedicines. 2025 Feb 13;13(2):460. doi: 10.3390/biomedicines13020460.
7
Circulating PIWI-interacting RNAs in Acute Ischemic Stroke patients.
Noncoding RNA Res. 2025 Jan 15;11:294-302. doi: 10.1016/j.ncrna.2025.01.005. eCollection 2025 Apr.
8
Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics.
Metab Brain Dis. 2025 Jan 4;40(1):84. doi: 10.1007/s11011-024-01520-7.
9
MRDPDA: A multi-Laplacian regularized deepFM model for predicting piRNA-disease associations.
J Cell Mol Med. 2024 Sep;28(17):e70046. doi: 10.1111/jcmm.70046.
10
Recent advances of PIWI-interacting RNA in cardiovascular diseases.
Clin Transl Med. 2024 Aug;14(8):e1770. doi: 10.1002/ctm2.1770.

本文引用的文献

2
piRNAs and Their Functions in the Brain.
Int J Hum Genet. 2016 Mar-Jun;16(1-2):53-60. doi: 10.1080/09723757.2016.11886278.
3
Long noncoding RNAs in psychiatric disorders.
Psychiatr Genet. 2016 Jun;26(3):109-16. doi: 10.1097/YPG.0000000000000129.
4
One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing.
Trends Biochem Sci. 2016 Apr;41(4):324-337. doi: 10.1016/j.tibs.2015.12.008. Epub 2016 Jan 19.
5
A novel Alzheimer disease locus located near the gene encoding tau protein.
Mol Psychiatry. 2016 Jan;21(1):108-17. doi: 10.1038/mp.2015.23. Epub 2015 Mar 17.
6
piRNAs: from biogenesis to function.
Development. 2014 Sep;141(18):3458-71. doi: 10.1242/dev.094037.
7
SUCLG2 identified as both a determinator of CSF Aβ1-42 levels and an attenuator of cognitive decline in Alzheimer's disease.
Hum Mol Genet. 2014 Dec 15;23(24):6644-58. doi: 10.1093/hmg/ddu372. Epub 2014 Jul 15.
8
ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology.
Acta Neuropathol. 2014;127(6):825-43. doi: 10.1007/s00401-014-1282-2. Epub 2014 Apr 27.
10
Non-coding RNA interact to regulate neuronal development and function.
Front Cell Neurosci. 2014 Feb 24;8:47. doi: 10.3389/fncel.2014.00047. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验