Department of Materials Science and Engineering, University of California , Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Nano Lett. 2017 Aug 9;17(8):4982-4988. doi: 10.1021/acs.nanolett.7b02159. Epub 2017 Jul 3.
van der Waals (vdW) forces, despite being relatively weak, hold the layers together in transition metal dichalcogenides (TMDs) and play a key role in their band structure evolution, hence profoundly affecting their physical properties. In this work, we experimentally probe the vdW interactions in MoS and other TMDs by measuring the valence band maximum (VBM) splitting (Δ) at K point as a function of pressure in a diamond anvil cell. As high pressure increases interlayer wave function coupling, the VBM splitting is enhanced in 2H-stacked MoS multilayers but, due to its specific geometry, not in 3R-stacked multilayers, hence allowing the interlayer contribution to be separated out of the total VBM splitting, as well as predicting a negative pressure (2.4 GPa) where the interlayer contribution vanishes. This negative pressure represents the threshold vdW interaction beyond which neighboring layers are electronically decoupled. This approach is compared to first-principles calculations and found to be widely applicable to other group-VI TMDs.
范德华(vdW)力虽然相对较弱,但在过渡金属二卤化物(TMDs)中使各层保持在一起,并在其能带结构演化中发挥关键作用,因此深刻影响其物理性质。在这项工作中,我们通过在金刚石对顶砧中测量 K 点价带最大值(VBM)劈裂(Δ)随压力的变化,实验探测了 MoS 和其他 TMDs 中的 vdW 相互作用。随着高压增加层间波函数耦合,2H 堆叠 MoS 多层中的 VBM 劈裂增强,但由于其特定的几何形状,3R 堆叠多层中没有增强,因此可以将层间贡献从总 VBM 劈裂中分离出来,并预测出层间贡献消失的负压力(2.4 GPa)。这个负压力代表了范德华相互作用的阈值,超过这个阈值后,相邻的层就会在电子上解耦。这种方法与第一性原理计算进行了比较,发现它广泛适用于其他 VI 族 TMDs。