Suppr超能文献

高斯过程回归在污水处理过程监控和故障检测中的应用。

Gaussian process regression for monitoring and fault detection of wastewater treatment processes.

机构信息

IVL Swedish Environmental Research Institute, Process Modelling & IT, PO Box 210 60, SE-100 31 Stockholm, Sweden and Uppsala University, Division of Systems and Control, Department of Information Technology, Uppsala, Sweden E-mail:

IVL Swedish Environmental Research Institute, Process Modelling & IT, Stockholm, Sweden.

出版信息

Water Sci Technol. 2017 Jun;75(12):2952-2963. doi: 10.2166/wst.2017.162.

Abstract

Monitoring and fault detection methods are increasingly important to achieve a robust and resource efficient operation of wastewater treatment plants (WWTPs). The purpose of this paper was to evaluate a promising machine learning method, Gaussian process regression (GPR), for WWTP monitoring applications. We evaluated GPR at two WWTP monitoring problems: estimate missing data in a flow rate signal (simulated data), and detect a drift in an ammonium sensor (real data). We showed that GPR with the standard estimation method, maximum likelihood estimation (GPR-MLE), suffered from local optima during estimation of kernel parameters, and did not give satisfactory results in a simulated case study. However, GPR with a state-of-the-art estimation method based on sequential Monte Carlo estimation (GPR-SMC) gave good predictions and did not suffer from local optima. Comparisons with simple standard methods revealed that GPR-SMC performed better than linear interpolation in estimating missing data in a noisy flow rate signal. We conclude that GPR-SMC is both a general and powerful method for monitoring full-scale WWTPs. However, this paper also shows that it does not always pay off to use more sophisticated methods. New methods should be critically compared against simpler methods, which might be good enough for some scenarios.

摘要

监测和故障检测方法对于实现污水处理厂(WWTP)的稳健和资源高效运行变得越来越重要。本文旨在评估一种有前途的机器学习方法,即高斯过程回归(GPR),用于 WWTP 监测应用。我们在两个 WWTP 监测问题中评估了 GPR:估计流量信号中的缺失数据(模拟数据),以及检测氨传感器的漂移(实际数据)。我们表明,使用标准估计方法(最大似然估计(GPR-MLE))的 GPR 在估计核参数时会受到局部最优的影响,并且在模拟案例研究中无法给出令人满意的结果。然而,基于序贯蒙特卡罗估计(GPR-SMC)的最先进的估计方法的 GPR 给出了很好的预测,并且不会受到局部最优的影响。与简单的标准方法的比较表明,GPR-SMC 在估计嘈杂流量信号中的缺失数据方面比线性插值表现更好。我们得出结论,GPR-SMC 是一种通用且强大的方法,适用于全规模 WWTP 的监测。然而,本文还表明,使用更复杂的方法并不总是值得的。新方法应与更简单的方法进行严格比较,这些方法对于某些情况可能已经足够了。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验