Suppr超能文献

利用热带降雨测量任务(TRMM)降雨数据评估混合机器学习算法用于巴西东部特雷玛丽亚斯水库的日流量预测

Assessment of hybrid machine learning algorithms using TRMM rainfall data for daily inflow forecasting in Três Marias Reservoir, eastern Brazil.

作者信息

Gomaa Ehab, Zerouali Bilel, Difi Salah, El-Nagdy Khaled A, Santos Celso Augusto Guimarães, Abda Zaki, Ghoneim Sherif S M, Bailek Nadjem, Silva Richarde Marques da, Rajput Jitendra, Ali Enas

机构信息

Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.

Vegetal Chemistry-Water-Energy Research Laboratory, Faculty of Civil Engineering and Architecture, Department of Hydraulic, Hassiba Benbouali, University of Chlef, B.P. 78C, Ouled Fares, Chlef, 02180, Algeria.

出版信息

Heliyon. 2023 Jul 30;9(8):e18819. doi: 10.1016/j.heliyon.2023.e18819. eCollection 2023 Aug.

Abstract

This study investigates the application of the Gaussian Radial Basis Function Neural Network (GRNN), Gaussian Process Regression (GPR), and Multilayer Perceptron Optimized by Particle Swarm Optimization (MLP-PSO) models in analyzing the relationship between rainfall and runoff and in predicting runoff discharge. These models utilize autoregressive input vectors based on daily-observed TRMM rainfall and TMR inflow data. The performance evaluation of each model is conducted using statistical measures to compare their effectiveness in capturing the complex relationships between input and output variables. The results consistently demonstrate that the MLP-PSO model outperforms the GRNN and GPR models, achieving the lowest root mean square error (RMSE) across multiple input combinations. Furthermore, the study explores the application of the Empirical Mode Decomposition-Hilbert-Huang Transform (EMD-HHT) in conjunction with the GPR and MLP-PSO models. This combination yields promising results in streamflow prediction, with the MLP-PSO-EMD model exhibiting superior accuracy compared to the GPR-EMD model. The incorporation of different components into the MLP-PSO-EMD model significantly improves its accuracy. Among the presented scenarios, Model M4, which incorporates the simplest components, emerges as the most favorable choice due to its lowest RMSE values. Comparisons with other models reported in the literature further underscore the effectiveness of the MLP-PSO-EMD model in streamflow prediction. This study offers valuable insights into the selection and performance of different models for rainfall-runoff analysis and prediction.

摘要

本研究调查了高斯径向基函数神经网络(GRNN)、高斯过程回归(GPR)和粒子群优化优化的多层感知器(MLP-PSO)模型在分析降雨与径流关系以及预测径流量方面的应用。这些模型利用基于每日观测的TRMM降雨和TMR入流数据的自回归输入向量。使用统计量对每个模型进行性能评估,以比较它们在捕捉输入和输出变量之间复杂关系方面的有效性。结果一致表明,MLP-PSO模型优于GRNN和GPR模型,在多种输入组合下实现了最低的均方根误差(RMSE)。此外,该研究探索了经验模态分解-希尔伯特-黄变换(EMD-HHT)与GPR和MLP-PSO模型的联合应用。这种组合在径流预测中产生了有前景的结果,MLP-PSO-EMD模型比GPR-EMD模型表现出更高的精度。将不同组件纳入MLP-PSO-EMD模型显著提高了其精度。在所呈现的情景中,包含最简单组件的模型M4由于其最低的RMSE值而成为最有利的选择。与文献中报道的其他模型的比较进一步强调了MLP-PSO-EMD模型在径流预测中的有效性。本研究为降雨-径流分析和预测中不同模型的选择和性能提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca68/10428059/dc5f854d7cd2/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验