Wang Qian, Wang Jianbiao, Zhou Mei, Li Qingli, Wang Yiting
Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China.
Ruijin Hospital, Shanghai 200025, China.
Biomed Opt Express. 2017 May 19;8(6):3017-3028. doi: 10.1364/BOE.8.003017. eCollection 2017 Jun 1.
Microscopic examination is one of the most common methods for acute lymphoblastic leukemia (ALL) diagnosis. Most traditional methods of automized blood cell identification are based on RGB color or gray images captured by light microscopes. This paper presents an identification method combining both spectral and spatial features to identify lymphoblasts from lymphocytes in hyperspectral images. Normalization and encoding method is applied for spectral feature extraction and the support vector machine-recursive feature elimination (SVM-RFE) algorithm is presented for spatial feature determination. A marker-based learning vector quantization (MLVQ) neural network is proposed to perform identification with the integrated features. Experimental results show that this algorithm yields identification accuracy, sensitivity, and specificity of 92.9%, 93.3%, and 92.5%, respectively. Hyperspectral microscopic blood imaging combined with neural network identification technique has the potential to provide a feasible tool for ALL pre-diagnosis.
显微镜检查是急性淋巴细胞白血病(ALL)诊断中最常用的方法之一。大多数传统的自动化血细胞识别方法基于光学显微镜拍摄的RGB彩色或灰度图像。本文提出了一种结合光谱和空间特征的识别方法,用于在高光谱图像中从淋巴细胞中识别原始淋巴细胞。采用归一化和编码方法进行光谱特征提取,并提出支持向量机递归特征消除(SVM-RFE)算法进行空间特征确定。提出了一种基于标记的学习向量量化(MLVQ)神经网络,用于利用综合特征进行识别。实验结果表明,该算法的识别准确率、灵敏度和特异性分别为92.9%、93.3%和92.5%。高光谱显微血液成像结合神经网络识别技术有潜力为ALL的预诊断提供一种可行的工具。