Suppr超能文献

基于光谱-空间特征的神经网络方法用于通过显微高光谱成像技术识别急性淋巴细胞白血病细胞

Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology.

作者信息

Wang Qian, Wang Jianbiao, Zhou Mei, Li Qingli, Wang Yiting

机构信息

Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China.

Ruijin Hospital, Shanghai 200025, China.

出版信息

Biomed Opt Express. 2017 May 19;8(6):3017-3028. doi: 10.1364/BOE.8.003017. eCollection 2017 Jun 1.

Abstract

Microscopic examination is one of the most common methods for acute lymphoblastic leukemia (ALL) diagnosis. Most traditional methods of automized blood cell identification are based on RGB color or gray images captured by light microscopes. This paper presents an identification method combining both spectral and spatial features to identify lymphoblasts from lymphocytes in hyperspectral images. Normalization and encoding method is applied for spectral feature extraction and the support vector machine-recursive feature elimination (SVM-RFE) algorithm is presented for spatial feature determination. A marker-based learning vector quantization (MLVQ) neural network is proposed to perform identification with the integrated features. Experimental results show that this algorithm yields identification accuracy, sensitivity, and specificity of 92.9%, 93.3%, and 92.5%, respectively. Hyperspectral microscopic blood imaging combined with neural network identification technique has the potential to provide a feasible tool for ALL pre-diagnosis.

摘要

显微镜检查是急性淋巴细胞白血病(ALL)诊断中最常用的方法之一。大多数传统的自动化血细胞识别方法基于光学显微镜拍摄的RGB彩色或灰度图像。本文提出了一种结合光谱和空间特征的识别方法,用于在高光谱图像中从淋巴细胞中识别原始淋巴细胞。采用归一化和编码方法进行光谱特征提取,并提出支持向量机递归特征消除(SVM-RFE)算法进行空间特征确定。提出了一种基于标记的学习向量量化(MLVQ)神经网络,用于利用综合特征进行识别。实验结果表明,该算法的识别准确率、灵敏度和特异性分别为92.9%、93.3%和92.5%。高光谱显微血液成像结合神经网络识别技术有潜力为ALL的预诊断提供一种可行的工具。

相似文献

3
Intelligent identification on cotton verticillium wilt based on spectral and image feature fusion.
Plant Methods. 2023 Jul 29;19(1):75. doi: 10.1186/s13007-023-01056-4.
6
Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
Comput Methods Programs Biomed. 2019 Sep;178:201-218. doi: 10.1016/j.cmpb.2019.06.018. Epub 2019 Jun 16.
7
Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception.
Front Bioeng Biotechnol. 2020 Aug 28;8:1005. doi: 10.3389/fbioe.2020.01005. eCollection 2020.
9
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.
IEEE Trans Image Process. 2018 Feb;27(2):837-850. doi: 10.1109/TIP.2017.2749145. Epub 2017 Sep 4.
10
[Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Sep;35(9):2639-43.

引用本文的文献

3
Specific spectral sub-images for machine learning evaluation of optical differences between carbon ion and X ray radiation effects.
Heliyon. 2024 Aug 2;10(15):e35249. doi: 10.1016/j.heliyon.2024.e35249. eCollection 2024 Aug 15.
4
Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis.
BMC Med Inform Decis Mak. 2024 Jan 8;24(1):13. doi: 10.1186/s12911-023-02397-9.
5
Bibliometric analysis of the current status and trends on medical hyperspectral imaging.
Front Med (Lausanne). 2023 Sep 19;10:1235955. doi: 10.3389/fmed.2023.1235955. eCollection 2023.
6
Deep learning-based label-free hematology analysis framework using optical diffraction tomography.
Heliyon. 2023 Jul 20;9(8):e18297. doi: 10.1016/j.heliyon.2023.e18297. eCollection 2023 Aug.
7
A deep learning model using hyperspectral image for EUS-FNA cytology diagnosis in pancreatic ductal adenocarcinoma.
Cancer Med. 2023 Aug;12(16):17005-17017. doi: 10.1002/cam4.6335. Epub 2023 Jul 17.
8
Effects of dimension reduction of hyperspectral images in skin gross pathology.
Skin Res Technol. 2023 Feb;29(2):e13270. doi: 10.1111/srt.13270.
9
MC-GAT: multi-layer collaborative generative adversarial transformer for cholangiocarcinoma classification from hyperspectral pathological images.
Biomed Opt Express. 2022 Oct 14;13(11):5794-5812. doi: 10.1364/BOE.472106. eCollection 2022 Nov 1.
10
Label-free hematology analysis method based on defocusing phase-contrast imaging under illumination of 415 nm light.
Biomed Opt Express. 2022 Aug 15;13(9):4752-4772. doi: 10.1364/BOE.466162. eCollection 2022 Sep 1.

本文引用的文献

1
Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.
Biochem Biophys Res Commun. 2016 Apr 22;473(1):272-277. doi: 10.1016/j.bbrc.2016.03.092. Epub 2016 Mar 24.
2
Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.
Appl Spectrosc. 2015 Dec;69(12):1372-80. doi: 10.1366/14-07766.
4
Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies.
Blood. 2015 Jun 25;125(26):3996-4009. doi: 10.1182/blood-2015-03-580027. Epub 2015 May 21.
5
Cancer statistics, 2015.
CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29. doi: 10.3322/caac.21254. Epub 2015 Jan 5.
6
Leucocyte classification for leukaemia detection using image processing techniques.
Artif Intell Med. 2014 Nov;62(3):179-91. doi: 10.1016/j.artmed.2014.09.002. Epub 2014 Sep 16.
7
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
J Biomed Opt. 2013 Oct;18(10):100901. doi: 10.1117/1.JBO.18.10.100901.
8
Hyperspectral enhanced dark field microscopy for imaging blood cells.
J Biophotonics. 2013 Dec;6(11-12):960-7. doi: 10.1002/jbio.201300067. Epub 2013 Aug 5.
9
Purpose and criteria for blood smear scan, blood smear examination, and blood smear review.
Ann Lab Med. 2013 Jan;33(1):1-7. doi: 10.3343/alm.2013.33.1.1. Epub 2012 Dec 17.
10
The rate of manual peripheral blood smear reviews in outpatients.
Clin Chem Lab Med. 2009;47(11):1401-5. doi: 10.1515/CCLM.2009.308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验