Li Yuan, Shi Xu, Yang Liping, Pu Chunyu, Tan Qijuan, Yang Zhengchun, Huang Hong
Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400044, China.
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China.
Biomed Opt Express. 2022 Oct 14;13(11):5794-5812. doi: 10.1364/BOE.472106. eCollection 2022 Nov 1.
Accurate histopathological analysis is the core step of early diagnosis of cholangiocarcinoma (CCA). Compared with color pathological images, hyperspectral pathological images have advantages for providing rich band information. Existing algorithms of HSI classification are dominated by convolutional neural network (CNN), which has the deficiency of distorting spectral sequence information of HSI data. Although vision transformer (ViT) alleviates this problem to a certain extent, the expressive power of transformer encoder will gradually decrease with increasing number of layers, which still degrades the classification performance. In addition, labeled HSI samples are limited in practical applications, which restricts the performance of methods. To address these issues, this paper proposed a multi-layer collaborative generative adversarial transformer termed MC-GAT for CCA classification from hyperspectral pathological images. MC-GAT consists of two pure transformer-based neural networks including a generator and a discriminator. The generator learns the implicit probability of real samples and transforms noise sequences into band sequences, which produces fake samples. These fake samples and corresponding real samples are mixed together as input to confuse the discriminator, which increases model generalization. In discriminator, a multi-layer collaborative transformer encoder is designed to integrate output features from different layers into collaborative features, which adaptively mines progressive relations from shallow to deep encoders and enhances the discriminating power of the discriminator. Experimental results on the Multidimensional Choledoch Datasets demonstrate that the proposed MC-GAT can achieve better classification results than many state-of-the-art methods. This confirms the potentiality of the proposed method in aiding pathologists in CCA histopathological analysis from hyperspectral imagery.
准确的组织病理学分析是胆管癌(CCA)早期诊断的核心步骤。与彩色病理图像相比,高光谱病理图像在提供丰富波段信息方面具有优势。现有的高光谱图像(HSI)分类算法以卷积神经网络(CNN)为主,存在扭曲HSI数据光谱序列信息的不足。虽然视觉Transformer(ViT)在一定程度上缓解了这个问题,但Transformer编码器的表达能力会随着层数的增加而逐渐下降,这仍然会降低分类性能。此外,在实际应用中,带标签的HSI样本有限,这限制了方法的性能。为了解决这些问题,本文提出了一种用于从高光谱病理图像中进行CCA分类的多层协作生成对抗Transformer,称为MC-GAT。MC-GAT由两个基于纯Transformer的神经网络组成,包括一个生成器和一个判别器。生成器学习真实样本的隐含概率,并将噪声序列转换为波段序列,从而生成虚假样本。这些虚假样本和相应的真实样本混合在一起作为输入,以使判别器困惑,从而提高模型的泛化能力。在判别器中,设计了一个多层协作Transformer编码器,将来自不同层的输出特征整合为协作特征,该编码器从浅到深的编码器中自适应地挖掘递进关系,并增强判别器的辨别能力。在多维胆总管数据集上的实验结果表明,所提出的MC-GAT比许多现有方法能取得更好的分类结果。这证实了所提出的方法在帮助病理学家从高光谱图像进行CCA组织病理学分析方面的潜力。