Lin Hui-Yi, Cheng Chia-Ho, Chen Dung-Tsa, Chen Y Ann, Park Jong Y
Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
Transl Cancer Res. 2016 Oct;5(Suppl 5):S951-S963. doi: 10.21037/tcr.2016.10.55.
Prostate cancer (PCa) shows a substantial clinical heterogeneity. The existing risk classification for PCa prognosis based on clinical factors is not sufficient. Although some biomarkers for PCa aggressiveness have been identified, their underlying functional mechanisms are still unclear. We previously reported a gene-gene interaction network associated with PCa aggressiveness based on single nucleotide polymorphism (SNP)-SNP interactions in the angiogenesis pathway. The goal of this study is to investigate potential functional evidence of the involvement of the genes in this gene-gene interaction network.
A total of 11 angiogenesis genes were evaluated. The crosstalks among genes were examined through coexpression and expression quantitative trait loci (eQTL) analyses. The study population is 352 Caucasian PCa patients in the Cancer Genome Atlas (TCGA) study. The pairwise coexpressions among the genes of interest were evaluated using the Spearman coefficient. The eQTL analyses were tested using the Kruskal-Wallis test.
Among all within gene and 55 possible pairwise gene evaluations, 12 gene pairs and one gene (MMP16) showed strong coexpression or significant eQTL evidence. There are nine gene pairs with a strong correlation (Spearman correlation ≥0.6, P<1×10). The top coexpressed gene pairs are (r=0.73), (r=0.71), (r=0.70), (r=0.68), (r=0.65), (r=0.62), (r=0.61), (r=0.6), and (r=0.60). One cis-eQTL in and five trans-eQTLs (, , , and ) are significant with a false discovery rate q value less than 0.2.
These findings provide potential biological evidence for the gene-gene interactions in this angiogenesis network. These identified interactions between the angiogenesis genes not only provide information for PCa etiology mechanism but also may serve as integrated biomarkers for building a risk prediction model for PCa aggressiveness.
前列腺癌(PCa)具有显著的临床异质性。基于临床因素的现有PCa预后风险分类并不充分。尽管已经鉴定出一些与PCa侵袭性相关的生物标志物,但其潜在的功能机制仍不清楚。我们之前报道了一个基于血管生成途径中单核苷酸多态性(SNP)-SNP相互作用的与PCa侵袭性相关的基因-基因相互作用网络。本研究的目的是调查该基因-基因相互作用网络中基因参与的潜在功能证据。
共评估了11个血管生成基因。通过共表达和表达数量性状位点(eQTL)分析来检查基因之间的相互作用。研究人群为癌症基因组图谱(TCGA)研究中的352名白种人PCa患者。使用Spearman系数评估感兴趣基因之间的成对共表达。使用Kruskal-Wallis检验进行eQTL分析。
在所有基因内和55种可能的基因对评估中,12个基因对和一个基因(MMP16)显示出强共表达或显著的eQTL证据。有9个基因对具有强相关性(Spearman相关性≥0.6,P<1×10)。共表达最强的基因对是 (r=0.73)、 (r=0.71)、 (r=0.70)、 (r=0.68)、 (r=0.65)、 (r=0.62)、 (r=0.61)、 (r=0.6)和 (r=0.60)。 中的一个顺式eQTL和五个反式eQTL( 、 、 、 和 )具有显著性,错误发现率q值小于0.2。
这些发现为该血管生成网络中的基因-基因相互作用提供了潜在的生物学证据。这些已鉴定的血管生成基因之间的相互作用不仅为PCa病因机制提供了信息,还可能作为构建PCa侵袭性风险预测模型的综合生物标志物。