Xu Ling-Xia, Yang Hui-Lin, Kuang Meng-An, Tu Zong-Cai, Wang Xiao-Lan
Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
3 Biotech. 2017 Jul;7(3):181. doi: 10.1007/s13205-017-0818-2. Epub 2017 Jun 29.
The microbial bioconversion of sterols can afford valuable steroid precursors, such as 4-androstene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD). The Mycobacterium neoaurum MN4 mutant strain can produce AD in high yield and can tolerate a higher concentration of the substrate phytosterol than the parent strain M. neoaurum MN2. In order to further investigate the mechanisms underlying the enhanced substrate and product tolerance, we performed a genomic analysis of the MN2 and MN4 strains. The genomes were sequenced using a high-throughput approach and analyzed using software for genome assembly, gene prediction and functional annotation, KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation, COG (cluster of orthologous) group cluster analysis, GO cluster analysis, and SNP detection and annotation. Based on comparative genomics, 184 mutations were identified in MN4, the average variant rate of 1 variant every 27,249 bases, with a TS/TV value of 0.5877 and missense mutations in one key sterol degradation genes (ChoM1) and four side chain degradation genes that encode enzymes catalysing β-oxidation. The results suggest the high AD yield might be due to mutation of ChoM and genes encoding FadE, FadB and FadA β-oxidation enzymes. This study provides a theoretical basis for further functional genomics analysis and heterologous production of M. neoaurum MN2 secondary metabolites.
甾醇的微生物生物转化能够产生有价值的甾体前体,如4-雄烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)。新金色分枝杆菌MN4突变株能够高产AD,并且与亲本菌株新金色分枝杆菌MN2相比,能够耐受更高浓度的底物植物甾醇。为了进一步研究增强的底物和产物耐受性背后的机制,我们对MN2和MN4菌株进行了基因组分析。使用高通量方法对基因组进行测序,并使用用于基因组组装、基因预测和功能注释、KEGG(京都基因与基因组百科全书)注释、COG(直系同源簇)聚类分析、GO聚类分析以及SNP检测和注释的软件进行分析。基于比较基因组学,在MN4中鉴定出184个突变,平均变异率为每27249个碱基出现1个变异,TS/TV值为0.5877,并且在一个关键的甾醇降解基因(ChoM1)和四个编码催化β-氧化酶的侧链降解基因中存在错义突变。结果表明,AD的高产可能归因于ChoM以及编码FadE、FadB和FadAβ-氧化酶的基因突变。本研究为进一步的功能基因组学分析和新金色分枝杆菌MN2次生代谢产物的异源生产提供了理论依据。