Suppr超能文献

大环内酯类抗生素的复兴

The macrolide antibiotic renaissance.

作者信息

Dinos George P

机构信息

Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece.

出版信息

Br J Pharmacol. 2017 Sep;174(18):2967-2983. doi: 10.1111/bph.13936. Epub 2017 Aug 10.

Abstract

Macrolides represent a large family of protein synthesis inhibitors of great clinical interest due to their applicability to human medicine. Macrolides are composed of a macrocyclic lactone of different ring sizes, to which one or more deoxy-sugar or amino sugar residues are attached. Macrolides act as antibiotics by binding to bacterial 50S ribosomal subunit and interfering with protein synthesis. The high affinity of macrolides for bacterial ribosomes, together with the highly conserved structure of ribosomes across virtually all of the bacterial species, is consistent with their broad-spectrum activity. Since the discovery of the progenitor macrolide, erythromycin, in 1950, many derivatives have been synthesised, leading to compounds with better bioavailability and acid stability and improved pharmacokinetics. These efforts led to the second generation of macrolides, including well-known members such as azithromycin and clarithromycin. Subsequently, in order to address increasing antibiotic resistance, a third generation of macrolides displaying improved activity against many macrolide resistant strains was developed. However, these improvements were accompanied with serious side effects, leading to disappointment and causing many researchers to stop working on macrolide derivatives, assuming that this procedure had reached the end. In contrast, a recent published breakthrough introduced a new chemical platform for synthesis and discovery of a wide range of diverse macrolide antibiotics. This chemical synthesis revolution, in combination with reduction in the side effects, namely, 'Ketek effects', has led to a macrolide renaissance, increasing the hope for novel and safe therapeutic agents to combat serious human infectious diseases.

摘要

大环内酯类药物是一大类蛋白质合成抑制剂,因其在人类医学中的适用性而具有重大临床意义。大环内酯类由不同环大小的大环内酯组成,其上连接有一个或多个脱氧糖或氨基糖残基。大环内酯类通过与细菌50S核糖体亚基结合并干扰蛋白质合成来发挥抗生素作用。大环内酯类对细菌核糖体的高亲和力,以及几乎所有细菌物种核糖体的高度保守结构,与其广谱活性相一致。自1950年发现第一代大环内酯类药物红霉素以来,已合成了许多衍生物,产生了生物利用度更高、酸稳定性更好且药代动力学得到改善的化合物。这些努力催生了第二代大环内酯类药物,包括阿奇霉素和克拉霉素等知名成员。随后,为应对日益增加的抗生素耐药性,开发了第三代大环内酯类药物,其对许多大环内酯耐药菌株具有更好的活性。然而,这些改进伴随着严重的副作用,令人失望,导致许多研究人员停止对大环内酯类衍生物的研究,认为这一过程已走到尽头。相比之下,最近发表的一项突破为合成和发现多种不同的大环内酯类抗生素引入了一个新的化学平台。这种化学合成革命,再加上副作用(即“泰利霉素效应”)的减少,引发了大环内酯类药物的复兴,增加了对抗严重人类传染病的新型安全治疗药物的希望。

相似文献

1
The macrolide antibiotic renaissance.
Br J Pharmacol. 2017 Sep;174(18):2967-2983. doi: 10.1111/bph.13936. Epub 2017 Aug 10.
2
A platform for the discovery of new macrolide antibiotics.
Nature. 2016 May 19;533(7603):338-45. doi: 10.1038/nature17967.
3
Recent advances in the field of 16-membered macrolide antibiotics.
Mini Rev Med Chem. 2011 Oct;11(12):1009-18. doi: 10.2174/138955711797247734.
4
Macrolide Hybrid Compounds: Drug Discovery Opportunities in Anti- Infective and Anti-inflammatory Area.
Curr Top Med Chem. 2017;17(8):919-940. doi: 10.2174/1568026616666160927160036.
6
The solithromycin journey-It is all in the chemistry.
Bioorg Med Chem. 2016 Dec 15;24(24):6420-6428. doi: 10.1016/j.bmc.2016.08.035. Epub 2016 Aug 22.
7
Azalides from azithromycin to new azalide derivatives.
J Antibiot (Tokyo). 2007 Feb;60(2):85-122. doi: 10.1038/ja.2007.10.
8
Recent Advances in the Development of Macrolide Antibiotics as Antimicrobial Agents.
Mini Rev Med Chem. 2020;20(7):601-625. doi: 10.2174/1389557520666191223160942.
9
Chemistry and mode of action of macrolides.
J Antimicrob Chemother. 1993 Mar;31 Suppl C:1-9. doi: 10.1093/jac/31.suppl_c.1.
10
Nature nurtures the design of new semi-synthetic macrolide antibiotics.
J Antibiot (Tokyo). 2017 May;70(5):527-533. doi: 10.1038/ja.2016.137. Epub 2016 Nov 30.

引用本文的文献

2
Algal Metabolites as Novel Therapeutics Against Methicillin-Resistant (MRSA): A Review.
Pharmaceutics. 2025 Jul 30;17(8):989. doi: 10.3390/pharmaceutics17080989.
7
Small-molecule strategies to combat antibiotic resistance: mechanisms, modifications, and contemporary approaches.
RSC Adv. 2025 Jul 14;15(30):24450-24474. doi: 10.1039/d5ra04047g. eCollection 2025 Jul 10.
8
Age-stratified pharmacovigilance of azithromycin: a multimethod signal detection analysis in the FAERS database.
J Pharm Policy Pract. 2025 Jul 8;18(1):2525356. doi: 10.1080/20523211.2025.2525356. eCollection 2025.
10
: Epidemiology and resistance evolution of an emerging zoonotic bacteria.
One Health. 2025 Jun 16;21:101098. doi: 10.1016/j.onehlt.2025.101098. eCollection 2025 Dec.

本文引用的文献

1
Toward the rational design of macrolide antibiotics to combat resistance.
Chem Biol Drug Des. 2017 Nov;90(5):641-652. doi: 10.1111/cbdd.13004. Epub 2017 May 16.
2
Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance.
Structure. 2017 May 2;25(5):750-761.e5. doi: 10.1016/j.str.2017.03.007. Epub 2017 Apr 13.
3
At the Intersection of Chemistry, Biology, and Medicine.
Annu Rev Biochem. 2017 Jun 20;86:1-19. doi: 10.1146/annurev-biochem-110716-121241. Epub 2017 Jan 11.
4
The solithromycin journey-It is all in the chemistry.
Bioorg Med Chem. 2016 Dec 15;24(24):6420-6428. doi: 10.1016/j.bmc.2016.08.035. Epub 2016 Aug 22.
5
Resistance to Macrolide Antibiotics in Public Health Pathogens.
Cold Spring Harb Perspect Med. 2016 Oct 3;6(10):a025395. doi: 10.1101/cshperspect.a025395.
6
Binding of Macrolide Antibiotics Leads to Ribosomal Selection against Specific Substrates Based on Their Charge and Size.
Cell Rep. 2016 Aug 16;16(7):1789-99. doi: 10.1016/j.celrep.2016.07.018. Epub 2016 Aug 4.
7
A platform for the discovery of new macrolide antibiotics.
Nature. 2016 May 19;533(7603):338-45. doi: 10.1038/nature17967.
8
The ABC of Ribosome-Related Antibiotic Resistance.
mBio. 2016 May 3;7(3):e00598-16. doi: 10.1128/mBio.00598-16.
9
Results from the Solithromycin International Surveillance Program (2014).
Antimicrob Agents Chemother. 2016 May 23;60(6):3662-8. doi: 10.1128/AAC.00185-16. Print 2016 Jun.
10
ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.
mBio. 2016 Mar 22;7(2):e01975. doi: 10.1128/mBio.01975-15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验