Suppr超能文献

丛枝菌根真菌诱导模式禾本科植物铵转运蛋白 AMT3;1 的系统发生、结构和功能特征。

Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses.

机构信息

Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse 1, 4056, Basel, Switzerland.

CIRAD, UMR AGAP, 34398, Montpellier Cedex 5, France.

出版信息

Mycorrhiza. 2017 Oct;27(7):695-708. doi: 10.1007/s00572-017-0786-8. Epub 2017 Jun 30.

Abstract

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both N and P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.

摘要

在丛枝菌根(AM)共生中,植物通过 AM 途径满足部分氮(N)需求。在高粱中,铵转运蛋白(AMT)AMT3;1 和在较小程度上 AMT4 在含有发育中的丛枝的细胞中被诱导。在这里,我们除了高粱之外,还在其他四种禾本科植物中鉴定了 AMT3;1 和 AMT4 的同源物。AMT3;1 和 AMT4 直系同源基因在 AM 根中被诱导,表明在这五种植物的共同祖先中,AMT3;1 和 AMT4 已经存在,并在 AM 定植时被上调。人工 microRNA 方法成功地用于下调水稻中的 AMT3;1 或 AMT4。此时,根瘤菌根定植和菌丝长度密度没有受到影响,这表明该操作没有改变 AM 共生的建立以及两者之间的相互作用。然而,敲低植物中真菌磷酸盐转运蛋白 FmPT 的表达显著降低,表明从 AM 真菌到植物的营养物质通量减少。AMT3;1 敲低植物(而不是 AMT4 敲低植物)在生长上受到 AM 真菌定植的显著刺激减少,并且从 AM 真菌网络中吸收的 N 和 P 减少。这证实了通过菌根途径的 N 和磷营养密切相关。但最重要的是,它表明 AMT3;1 是参与菌根铵转移的主要植物转运蛋白,并且其在吸收 N 中的功能不能由 AMT4 执行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验