Jadhav Ashwini Khanderao, Karuppayil Sankunny Mohan
School of Life Sciences (DST-FIST and UGC-SAP Sponsored), SRTM University (NAAC Accredited with 'A' Grade), Nanded, Maharashtra, 431606, India.
In Silico Pharmacol. 2016 Dec;5(1):4. doi: 10.1007/s40203-017-0024-2. Epub 2017 Jun 30.
DNA relaxation is an important step in DNA replication. DNA topoisomerases play a major role in DNA relaxation. Hence these enzymes are important targets for cancer drugs. DNA topoisomerase inhibitors bind to the transient enzyme-DNA complex and inhibit DNA replication. Various inhibitors of topoisomerase I and II are prescribed as drugs. Topoisomerase II is considered as an important target for the development of anticancer drugs. In this study we have demonstrated molecular docking of thirteen fluoroquinolines with human DNA topoisomerase II alpha (a) and beta (b). Fluoroquinolines are broad spectrum antibacterial antibiotics and it is highly effective against various bacterial infections. Some of the fluoroquinolines like moxifloxacin exert antifungal as well as anti-cancer activity. It forms complexes with topoisomerase II a and are responsible for stoppage DNA replication. Molecular docking studies showed that fluoroquinolines has shown formation of hydrogen bond and good binding affinity with human Topo2a and Topo2b. Hence FQs may inhibit the activity of enzyme topoisomerase by binding at its active site. Ofloxacin, sparafloxacin, ciprofloxacin and moxifloxacin are predicted to be the most potent inhibitors among the thirteen FQs docked. GLN773, ASN770, LYS723 and TRP931 amino acid residues of Topo2a are involved in binding with FQs while ASP479, SER480, ARG820, ARG503, LYS456 and GLN778 amino acid residues of Topo2b are involved in binding with FQs. Our in silico study suggests that fluoroquinolines could be repositioned as DNA topoisomerase II inhibitors hence can be used as anticancer drugs. In vitro and in vivo experiments need to be done to confirm their efficacy.
DNA松弛是DNA复制中的重要步骤。DNA拓扑异构酶在DNA松弛中起主要作用。因此,这些酶是癌症药物的重要靶点。DNA拓扑异构酶抑制剂与瞬时酶-DNA复合物结合并抑制DNA复制。多种拓扑异构酶I和II抑制剂被用作药物。拓扑异构酶II被认为是抗癌药物开发的重要靶点。在本研究中,我们展示了13种氟喹诺酮与人DNA拓扑异构酶IIα(a)和β(b)的分子对接。氟喹诺酮是广谱抗菌抗生素,对各种细菌感染高度有效。一些氟喹诺酮如莫西沙星具有抗真菌和抗癌活性。它与拓扑异构酶IIα形成复合物并导致DNA复制停止。分子对接研究表明,氟喹诺酮与人类Topo2a和Topo2b形成氢键并具有良好的结合亲和力。因此,氟喹诺酮可能通过结合在其活性位点来抑制拓扑异构酶的活性。在对接的13种氟喹诺酮中,氧氟沙星、司帕沙星、环丙沙星和莫西沙星预计是最有效的抑制剂。Topo2a的GLN773、ASN770、LYS723和TRP931氨基酸残基参与与氟喹诺酮的结合,而Topo2b的ASP479、SER480、ARG820、ARG503、LYS456和GLN778氨基酸残基参与与氟喹诺酮的结合。我们的计算机模拟研究表明,氟喹诺酮可以重新定位为DNA拓扑异构酶II抑制剂,因此可以用作抗癌药物。需要进行体外和体内实验来确认它们的疗效。