Suppr超能文献

对13种氟喹诺酮与人拓扑异构酶II a和b的分子对接研究。

Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b.

作者信息

Jadhav Ashwini Khanderao, Karuppayil Sankunny Mohan

机构信息

School of Life Sciences (DST-FIST and UGC-SAP Sponsored), SRTM University (NAAC Accredited with 'A' Grade), Nanded, Maharashtra, 431606, India.

出版信息

In Silico Pharmacol. 2016 Dec;5(1):4. doi: 10.1007/s40203-017-0024-2. Epub 2017 Jun 30.

Abstract

DNA relaxation is an important step in DNA replication. DNA topoisomerases play a major role in DNA relaxation. Hence these enzymes are important targets for cancer drugs. DNA topoisomerase inhibitors bind to the transient enzyme-DNA complex and inhibit DNA replication. Various inhibitors of topoisomerase I and II are prescribed as drugs. Topoisomerase II is considered as an important target for the development of anticancer drugs. In this study we have demonstrated molecular docking of thirteen fluoroquinolines with human DNA topoisomerase II alpha (a) and beta (b). Fluoroquinolines are broad spectrum antibacterial antibiotics and it is highly effective against various bacterial infections. Some of the fluoroquinolines like moxifloxacin exert antifungal as well as anti-cancer activity. It forms complexes with topoisomerase II a and are responsible for stoppage DNA replication. Molecular docking studies showed that fluoroquinolines has shown formation of hydrogen bond and good binding affinity with human Topo2a and Topo2b. Hence FQs may inhibit the activity of enzyme topoisomerase by binding at its active site. Ofloxacin, sparafloxacin, ciprofloxacin and moxifloxacin are predicted to be the most potent inhibitors among the thirteen FQs docked. GLN773, ASN770, LYS723 and TRP931 amino acid residues of Topo2a are involved in binding with FQs while ASP479, SER480, ARG820, ARG503, LYS456 and GLN778 amino acid residues of Topo2b are involved in binding with FQs. Our in silico study suggests that fluoroquinolines could be repositioned as DNA topoisomerase II inhibitors hence can be used as anticancer drugs. In vitro and in vivo experiments need to be done to confirm their efficacy.

摘要

DNA松弛是DNA复制中的重要步骤。DNA拓扑异构酶在DNA松弛中起主要作用。因此,这些酶是癌症药物的重要靶点。DNA拓扑异构酶抑制剂与瞬时酶-DNA复合物结合并抑制DNA复制。多种拓扑异构酶I和II抑制剂被用作药物。拓扑异构酶II被认为是抗癌药物开发的重要靶点。在本研究中,我们展示了13种氟喹诺酮与人DNA拓扑异构酶IIα(a)和β(b)的分子对接。氟喹诺酮是广谱抗菌抗生素,对各种细菌感染高度有效。一些氟喹诺酮如莫西沙星具有抗真菌和抗癌活性。它与拓扑异构酶IIα形成复合物并导致DNA复制停止。分子对接研究表明,氟喹诺酮与人类Topo2a和Topo2b形成氢键并具有良好的结合亲和力。因此,氟喹诺酮可能通过结合在其活性位点来抑制拓扑异构酶的活性。在对接的13种氟喹诺酮中,氧氟沙星、司帕沙星、环丙沙星和莫西沙星预计是最有效的抑制剂。Topo2a的GLN773、ASN770、LYS723和TRP931氨基酸残基参与与氟喹诺酮的结合,而Topo2b的ASP479、SER480、ARG820、ARG503、LYS456和GLN778氨基酸残基参与与氟喹诺酮的结合。我们的计算机模拟研究表明,氟喹诺酮可以重新定位为DNA拓扑异构酶II抑制剂,因此可以用作抗癌药物。需要进行体外和体内实验来确认它们的疗效。

相似文献

1
Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b.
In Silico Pharmacol. 2016 Dec;5(1):4. doi: 10.1007/s40203-017-0024-2. Epub 2017 Jun 30.
2
Topoisomerase II as a target for repurposed antibiotics in : an in silico study.
In Silico Pharmacol. 2021 Mar 26;9(1):24. doi: 10.1007/s40203-021-00082-1. eCollection 2021.
4
The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting.
World J Microbiol Biotechnol. 2017 May;33(5):96. doi: 10.1007/s11274-017-2264-z. Epub 2017 Apr 13.
5
Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.
Interdiscip Sci. 2014 Dec;6(4):285-91. doi: 10.1007/s12539-012-0048-6. Epub 2014 Aug 9.
6
Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics.
Anticancer Agents Med Chem. 2020;20(4):464-475. doi: 10.2174/1871520619666191125130237.
8
Inhibition of human topoisomerase IIalpha by fluoroquinolones and ultraviolet A irradiation.
Toxicol Sci. 2002 Sep;69(1):16-22. doi: 10.1093/toxsci/69.1.16.
10
2,4-disubstituted 6-fluoroquinolines as potent antiplasmodial agents: QSAR, homology modeling, molecular docking and ADMET studies.
J Taibah Univ Med Sci. 2023 Nov 23;19(2):233-247. doi: 10.1016/j.jtumed.2023.11.006. eCollection 2024 Apr.

引用本文的文献

4
approaches for drug repurposing in oncology: a scoping review.
Front Pharmacol. 2024 Jun 11;15:1400029. doi: 10.3389/fphar.2024.1400029. eCollection 2024.
7
Design, synthesis, and biological evaluation of a small molecule oral agonist of the glucagon-like-peptide-1 receptor.
J Biol Chem. 2022 May;298(5):101889. doi: 10.1016/j.jbc.2022.101889. Epub 2022 Apr 2.
9
Jadomycins: A potential chemotherapy for multi-drug resistant metastatic breast cancer.
Pharmacol Res Perspect. 2021 Dec;9(6):e00886. doi: 10.1002/prp2.886.
10
Topoisomerase II as a target for repurposed antibiotics in : an in silico study.
In Silico Pharmacol. 2021 Mar 26;9(1):24. doi: 10.1007/s40203-021-00082-1. eCollection 2021.

本文引用的文献

1
The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting.
World J Microbiol Biotechnol. 2017 May;33(5):96. doi: 10.1007/s11274-017-2264-z. Epub 2017 Apr 13.
2
Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.
Interdiscip Sci. 2014 Dec;6(4):285-91. doi: 10.1007/s12539-012-0048-6. Epub 2014 Aug 9.
3
Mechanism of quinolone action and resistance.
Biochemistry. 2014 Mar 18;53(10):1565-74. doi: 10.1021/bi5000564. Epub 2014 Mar 7.
4
Development of purely structure-based pharmacophores for the topoisomerase I-DNA-ligand binding pocket.
J Comput Aided Mol Des. 2013 Dec;27(12):1037-49. doi: 10.1007/s10822-013-9695-x. Epub 2013 Dec 1.
7
New mechanistic and functional insights into DNA topoisomerases.
Annu Rev Biochem. 2013;82:139-70. doi: 10.1146/annurev-biochem-061809-100002. Epub 2013 Mar 13.
8
Drugging topoisomerases: lessons and challenges.
ACS Chem Biol. 2013 Jan 18;8(1):82-95. doi: 10.1021/cb300648v. Epub 2013 Jan 4.
9
Identification of the molecular basis of doxorubicin-induced cardiotoxicity.
Nat Med. 2012 Nov;18(11):1639-42. doi: 10.1038/nm.2919. Epub 2012 Oct 28.
10
Characterization of novel antisense HIF-1α transcripts in human cancers.
Cell Cycle. 2011 Sep 15;10(18):3189-97. doi: 10.4161/cc.10.18.17183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验