Department of Pharmacology & Toxicology (FY, AAA-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina.
Alcohol Clin Exp Res. 2017 Sep;41(9):1541-1550. doi: 10.1111/acer.13442. Epub 2017 Jul 25.
Ethanol (EtOH)-evoked oxidative stress, which contributes to myocardial dysfunction in proestrus rats, is mediated by increases in NADPH oxidase (Nox) activity, malondialdehyde (MDA), and ERK1/2 phosphorylation. Whether these biochemical responses, which are triggered by alcohol-derived acetaldehyde in noncardiac tissues, occur in proestrus rats' hearts remains unknown. Therefore, we elucidated the roles of alcohol dehydrogenase (ADH), cytochrome P4502E1 (CYP2E1), and catalase, which catalyze alcohol oxidation to acetaldehyde, in these alcohol-evoked biochemical and hemodynamic responses in proestrus rats.
Conscious proestrus rats prepared for measurements of left ventricular (LV) function and blood pressure (BP) received EtOH (1.5 g/kg, intravenous [i.v.] infusion over 30 minutes) or saline 30 minutes after an ADH and CYP2E1 inhibitor, 4-methylpyrazole (4-MP) (82 mg/kg, intraperitoneal), a catalase inhibitor, 3-AT (0.5 g/kg, i.v.), their combination, or vehicle. LV function and BP were monitored for additional 60 minutes after EtOH or saline infusion before collecting the hearts for ex vivo measurements of LV reactive oxygen species (ROS), Nox activity, MDA, and ERK1/2 phosphorylation.
EtOH reduced LV function (dP/dt and LV developed pressure) and BP, and increased cardiac Nox activity, ROS and MDA levels, and ERK1/2 phosphorylation. Either inhibitor partially, and their combination significantly, attenuated these responses despite the substantially higher blood EtOH level, and the increased cardiac oxidative stress and reduced BP caused by 3-AT alone or with 4-MP. The inhibitors reduced cardiac MDA level and reversed EtOH effect on cardiac and plasma MDA.
EtOH oxidative metabolism plays a pivotal role in the EtOH-evoked LV oxidative stress and dysfunction in proestrus rats. Notably, catalase inhibition (3-AT) caused cardiac oxidative stress and hypotension.
乙醇(EtOH)引起的氧化应激导致动情前期大鼠心肌功能障碍,其机制与 NADPH 氧化酶(Nox)活性、丙二醛(MDA)和 ERK1/2 磷酸化增加有关。然而,这些在非心脏组织中由酒精衍生的乙醛触发的生化反应是否发生在动情前期大鼠的心脏中尚不清楚。因此,我们阐明了在动情前期大鼠中,催化酒精氧化生成乙醛的醇脱氢酶(ADH)、细胞色素 P4502E1(CYP2E1)和过氧化氢酶在这些酒精诱发的生化和血液动力学反应中的作用。
准备测量左心室(LV)功能和血压(BP)的清醒动情前期大鼠,在 ADH 和 CYP2E1 抑制剂 4-甲基吡唑(4-MP)(82mg/kg,腹腔内)、过氧化氢酶抑制剂 3-氨基-1,2,4-三唑(3-AT)(0.5g/kg,静脉内)、它们的组合或载体给药 30 分钟后,接受 1.5g/kg 的 EtOH(静脉内输注 30 分钟)或生理盐水。在给予 EtOH 或生理盐水输注后再监测 LV 功能和 BP 60 分钟,然后收集心脏进行 LV 活性氧(ROS)、Nox 活性、MDA 和 ERK1/2 磷酸化的离体测量。
EtOH 降低了 LV 功能(dP/dt 和 LV 发展压)和 BP,并增加了心脏 Nox 活性、ROS 和 MDA 水平以及 ERK1/2 磷酸化。尽管血液 EtOH 水平显著升高,且单独的 3-AT 或与 4-MP 联合使用会导致心脏氧化应激增加和血压降低,但抑制剂部分、联合使用显著减轻了这些反应。抑制剂降低了心脏 MDA 水平,并逆转了 EtOH 对心脏和血浆 MDA 的作用。
EtOH 的氧化代谢在 EtOH 诱发的动情前期大鼠 LV 氧化应激和功能障碍中起关键作用。值得注意的是,过氧化氢酶抑制剂(3-AT)引起了心脏氧化应激和低血压。