Suppr超能文献

慢性肉芽肿性感染真菌申克孢子丝菌细胞色素 P450 单加氧酶的计算机分析:特别关注 CYP51。

In silico analysis of cytochrome P450 monooxygenases in chronic granulomatous infectious fungus Sporothrix schenckii: Special focus on CYP51.

机构信息

Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.

Laboratory of Theory of Biopolymers, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.

出版信息

Biochim Biophys Acta Proteins Proteom. 2018 Jan;1866(1):166-177. doi: 10.1016/j.bbapap.2017.10.003. Epub 2017 Oct 5.

Abstract

Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.

摘要

申克孢子丝菌病是一种新兴的慢性、肉芽肿性、皮下、真菌性感染,由申克孢子丝菌引起。酮康唑无效,因此孢子丝菌病用唑类药物伊曲康唑治疗。众所周知,唑类药物通过抑制细胞色素 P450 单加氧酶(P450s)、血红素硫醇酶蛋白发挥作用。迄今为止,对于申克孢子丝菌中的 P450 以及其对酮康唑耐药的分子基础还一无所知。在这里,我们对申克孢子丝菌的 P450 进行了全基因组鉴定、注释、系统发育分析和全面的 P450 家族水平比较分析,并结合 CYP51 的计算机结构分析,提出了申克孢子丝菌对酮康唑耐药的基本原理。对申克孢子丝菌的基因组数据挖掘显示,其基因组中有 40 个 P450,可以分为 32 个 P450 家族和 39 个 P450 亚家族。全面的 P450 比较分析表明,申克孢子丝菌与植物病原真菌有 11 个 P450 家族共享,并有三个独特的 P450 家族:CYP5077、CYP5386 和 CYP5696(新家族)。在 P450 中,还发现了唑类药物的主要靶标 CYP51,它也存在于申克孢子丝菌中。申克孢子丝菌 CYP51 的 3D 建模显示了存在具有特征性 P450 基序的异常大的还原酶相互作用位点 2。计算机分析揭示了与酮康唑耐药相关的多种突变,尤其是在活性位点入口处的通道。与酮康唑相比,伊曲康唑更稳定的一个可能原因是,伊曲康唑更扩展的分子可能与 ASN-230 形成氢键。这反过来可能解释了它对申克孢子丝菌的有效性,而对酮康唑耐药。本文是一个题为“细胞色素 P450 生物多样性和生物技术”的特刊的一部分,由 Erika Plettner、Gianfranco Gilardi、Luet Wong、Vlada Urlacher 和 Jared Goldstone 编辑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验