Urbanowicz Breeanna R, Bharadwaj Vivek S, Alahuhta Markus, Peña Maria J, Lunin Vladimir V, Bomble Yannick J, Wang Shuo, Yang Jeong-Yeh, Tuomivaara Sami T, Himmel Michael E, Moremen Kelley W, York William S, Crowley Michael F
Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
Biosciences Division, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Plant J. 2017 Sep;91(6):931-949. doi: 10.1111/tpj.13628. Epub 2017 Aug 28.
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.
植物多糖生物合成这一复杂过程的机制基础目前仍知之甚少,主要原因是糖基转移酶(GT)难以进行结构表征。在拟南芥中,糖基转移酶家族37(GT37)岩藻糖基转移酶1(AtFUT1)催化将末端1,2-岩藻糖基残基区域特异性转移至木葡聚糖侧链上,这是半乳糖木葡聚糖岩藻糖基化侧链生物合成中的关键步骤。我们采用了包括蛋白质表达、X射线晶体学、诱变实验和分子模拟在内的多管齐下的方法,揭示了AtFUT1催化岩藻糖基化的机制基础。哺乳动物细胞培养表达能够产生足够用于X射线晶体学研究的该酶,从而揭示了AtFUT1与结合的供体和受体底物类似物复合物的结构架构。由于缺乏一个位置合适的作为催化碱基的活性位点残基,我们提出了一种由氢键网络促进的非典型水介导的岩藻糖基化机制,诱变实验以及详细的原子模拟证实了这一机制。