Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9.
ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24788-24796. doi: 10.1021/acsami.7b06335. Epub 2017 Jul 17.
Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H and BF are shown to coordinate to azaisoindigo and affect the energy of the S → S transition. A combination of time-dependent density functional theory and UV/vis and H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF·EtO. This suggests the possibility of using the BF-bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.
低带隙有机半导体在各种有机电子应用中非常重要,例如有机光伏器件、光电探测器和场效应晶体管。在我们之前的工作中,引入了 7-氮杂吲哚作为合成给体-受体有机半导体的缺电子构建块,在此基础上,我们展示了路易斯酸如何进一步调整前沿分子轨道的能量。路易斯酸与 7-氮杂吲哚的吡啶氮配位极大地降低了氮杂吲哚π体系中的电子密度,导致最低未占据分子轨道(LUMO)能量显著降低。这导致最高占据分子轨道-LUMO 能隙变小,并将最低能量的电子跃迁很好地移动到近红外区域。结果表明 H 和 BF 都能与氮杂吲哚配位并影响 S → S 跃迁的能量。时间依赖密度泛函理论和 UV/vis 和 H NMR 光谱滴定的组合表明,当存在两个氮杂吲哚基团且使用高浓度酸时,两个吡啶氮都结合路易斯酸。重要的是,我们证明这种酸碱化学可以在固-气界面进行,通过将氮取代有机半导体的薄膜暴露于气相 BF·EtO 来实现。这表明可以将 BF 结合的基于 7-氮杂吲哚的半导体用作各种有机电子应用中的 n 型材料。