Withrow Diana R, Pole Jason D, Nishri E Diane, Tjepkema Michael, Marrett Loraine D
Radiation Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive, Room 7E590, Bethesda, MD, 20892-9778, USA.
Pediatric Oncology Group of Ontario, 480 University Avenue, Suite 1014, Toronto, ON, M5G 1V2, Canada.
Popul Health Metr. 2017 Jul 3;15(1):24. doi: 10.1186/s12963-017-0142-4.
Cause-specific (CS) and net survival in a relative survival framework (RS) are two of the most common methods for estimating cancer survival. In this paper, we assess the differences in results produced by two permutations of cause-specific and relative survival applied to estimating cancer survival and disparities in cancer survival, using data from First Nations and non-Aboriginal populations in Canada.
Subjects were members of the 1991 Canadian Census Mortality Cohort, a population-based cohort of adult respondents to the 1991 Long Form Census who have been followed up for incident cancers and death through linkage to administrative databases. We compared four methods: relative survival analyses with ethnicity-specific life tables (RS-ELT); relative survival with general population life tables (RS-GLT); cause-specific survival with a broad definition of cancer death (CS-Broad); and cause-specific survival with a narrow definition of cause of death (CS-Narrow) and applied these to the nine most common cancers among First Nations.
Apart from breast and prostate cancers, RS-ELT, RS-GLT, and CS-Broad tended to produce similar estimates of age-standardized five-year survival, whereas CS-Narrow yielded higher estimates of survival. CS-Narrow estimates were particularly unlike those based on the other methods for cancers of the digestive and respiratory tracts. Estimates of disparities in survival were generally comparable across the four methods except for breast and prostate cancers.
Cancer surveillance efforts in sub-populations defined by race, ethnicity, geography, socioeconomic status, or similar factors are necessary for identifying disparities and monitoring progress toward reducing them. In the absence of routine monitoring of cancer survival and cancer survival disparities in these populations, estimates generated by different methods will inevitably be compared over time and across populations. In this study, we demonstrate that caution should be exercised in making these comparisons, particularly in interpreting cause-specific survival rates with an unknown or narrow definition of cancer death and in estimates of breast and prostate cancer survival and/or disparities in survival generated by different methods.
在相对生存框架(RS)中,特定病因(CS)生存率和净生存率是估计癌症生存率最常用的两种方法。在本文中,我们利用加拿大原住民和非原住民群体的数据,评估了将特定病因生存率和相对生存率的两种排列应用于估计癌症生存率时所产生的结果差异,以及癌症生存率的差异情况。
研究对象为1991年加拿大人口普查死亡率队列的成员,这是一个基于人群的队列,由1991年长期人口普查的成年受访者组成,通过与行政数据库的链接对其进行了新发癌症和死亡情况的随访。我们比较了四种方法:采用特定种族生命表的相对生存分析(RS-ELT);采用一般人群生命表的相对生存分析(RS-GLT);对癌症死亡进行宽泛定义的特定病因生存分析(CS-Broad);以及对死亡原因进行狭义定义的特定病因生存分析(CS-Narrow),并将这些方法应用于原住民中九种最常见的癌症。
除乳腺癌和前列腺癌外,RS-ELT、RS-GLT和CS-Broad往往得出相似的年龄标准化五年生存率估计值,而CS-Narrow得出的生存率估计值更高。对于消化道和呼吸道癌症,CS-Narrow的估计值与基于其他方法的估计值尤其不同。除乳腺癌和前列腺癌外,四种方法的生存率差异估计值总体上具有可比性。
对按种族、民族、地理、社会经济地位或类似因素定义的亚人群进行癌症监测,对于识别差异和监测在减少差异方面取得的进展是必要的。如果没有对这些人群的癌症生存率和癌症生存率差异进行常规监测,不同方法得出的估计值将不可避免地随着时间推移和不同人群进行比较。在本研究中,我们证明在进行这些比较时应谨慎,特别是在解释癌症死亡定义未知或狭义的特定病因生存率时,以及在解释不同方法得出的乳腺癌和前列腺癌生存率及/或生存率差异估计值时。