School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK.
Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
Sci Rep. 2017 Jul 3;7(1):4539. doi: 10.1038/s41598-017-04782-7.
Fracture toughness measures the resistance of a material to fracture. This fundamental property is used in diverse engineering designs including mechanical, civil, materials, electronics and chemical engineering applications. In spite of the advancements made in the past 40 years, the evaluation of this remains challenging for extremely heterogeneous materials such as composite concretes. By taking advantage of the optical properties of a thin birefringent coating on the surface of opaque, notched composite concrete beams, here we sense the evolution of the maximum shear stress distribution on the beams under loading. The location of the maximum deviator stress is tracked ahead of the crack tip on the experimental concrete samples under the ultimate load, and hence the effective crack length is characterised. Using this, the fracture toughness of a number of heterogeneous composite beams is evaluated and the results compare favourably well with other conventional methods using combined experimental and numerical/analytical approaches. Finally a new model, correlating the optically measured shear stress concentration factor and flexural strength with the fracture toughness of concretes is proposed. The current photonics-based study could be vital in evaluating the fracture toughness of even opaque and complex heterogeneous materials more effectively in future.
断裂韧性衡量材料抵抗断裂的能力。这一基本性质被应用于各种工程设计,包括机械、土木、材料、电子和化学工程应用。尽管在过去的 40 年里取得了进展,但对于复合材料混凝土等极其不均匀的材料,评估仍然具有挑战性。通过利用不透明、带缺口的复合材料梁表面薄双折射涂层的光学性质,我们在这里感知到梁在加载下最大剪切应力分布的演变。在实验混凝土样本的极限载荷下,在裂纹尖端之前跟踪最大偏应力的位置,从而确定有效裂纹长度。利用这一点,评估了一些不均匀的复合材料梁的断裂韧性,结果与其他传统方法使用结合实验和数值/分析方法的结果相比非常吻合。最后,提出了一个新模型,将光学测量的剪切应力集中因子和弯曲强度与混凝土的断裂韧性相关联。未来,基于光子学的当前研究可能对于更有效地评估甚至不透明和复杂的不均匀材料的断裂韧性至关重要。