Shanghai Tenth People's Hospital, and Neuroregeneration Key Laboratory of Shanghai Universities, Tongji University School of Medicine, Shanghai 200092, China.
China Novartis Institutes for BioMedical Research, Shanghai 201203, China.
Cell Res. 2017 Sep;27(9):1083-1099. doi: 10.1038/cr.2017.85. Epub 2017 Jul 4.
Both environmental cues and intracellular bioenergetic states profoundly affect intracellular pH (pHi). How a cell responds to pHi changes to maintain bioenergetic homeostasis remains elusive. Here we show that Smad5, a well-characterized downstream component of bone morphogenetic protein (BMP) signaling responds to pHi changes. Cold, basic or hypertonic conditions increase pHi, which in turn dissociates protons from the charged amino acid clusters within the MH1 domain of Smad5, prompting its relocation from the nucleus to the cytoplasm. On the other hand, heat, acidic or hypotonic conditions decrease pHi, blocking the nuclear export of Smad5, and thus causing its nuclear accumulation. Active nucleocytoplasmic shuttling of Smad5 induced by environmental changes and pHi fluctuation is independent of BMP signaling, carboxyl terminus phosphorylation and Smad4. In addition, ablation of Smad5 causes chronic and irreversible dysregulation of cellular bioenergetic homeostasis and disrupted normal neural developmental processes as identified in a differentiation model of human pluripotent stem cells. Importantly, these metabolic and developmental deficits in Smad5-deficient cells could be rescued only by cytoplasmic Smad5. Cytoplasmic Smad5 physically interacts with hexokinase 1 and accelerates glycolysis. Together, our findings indicate that Smad5 acts as a pHi messenger and maintains the bioenergetic homeostasis of cells by regulating cytoplasmic metabolic machinery.
环境线索和细胞内生物能量状态都深刻地影响细胞内 pH 值(pHi)。细胞如何响应 pH 值变化以维持生物能量稳态仍然难以捉摸。在这里,我们表明 Smad5,一种骨形态发生蛋白 (BMP) 信号的特征良好的下游成分,对 pH 值变化有反应。冷、碱性或高渗条件会增加 pHi,这反过来会使质子从 Smad5 MH1 结构域内带电荷的氨基酸簇中解离出来,促使其从核转移到细胞质。另一方面,热、酸性或低渗条件会降低 pHi,阻止 Smad5 的核输出,从而导致其核积累。环境变化和 pH 值波动引起的 Smad5 的主动核质穿梭与 BMP 信号、羧基末端磷酸化和 Smad4 无关。此外,Smad5 的缺失会导致细胞生物能量稳态的慢性和不可逆失调,并破坏人多能干细胞分化模型中正常的神经发育过程。重要的是,只有细胞质 Smad5 才能挽救 Smad5 缺失细胞中的这些代谢和发育缺陷。细胞质 Smad5 与己糖激酶 1 相互作用并加速糖酵解。总之,我们的发现表明 Smad5 作为 pH 值信使发挥作用,并通过调节细胞质代谢机制来维持细胞的生物能量稳态。