Suppr超能文献

抑制微粒体 PGE 合酶-1 通过增加 PGI 来降低人血管张力:一种比 COX-2 抑制更安全的选择。

Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI : a safer alternative to COX-2 inhibition.

机构信息

INSERM U1148, Paris, France.

Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey.

出版信息

Br J Pharmacol. 2017 Nov;174(22):4087-4098. doi: 10.1111/bph.13939. Epub 2017 Aug 11.

Abstract

BACKGROUND AND PURPOSE

The side effects of cyclooxygenase-2 (COX-2) inhibitors on the cardiovascular system could be associated with reduced prostaglandin (PG)I synthesis. Microsomal PGE synthase-1 (mPGES-1) catalyses the formation of PGE from COX-derived PGH . This enzyme is induced under inflammatory conditions and constitutes an attractive target for novel anti-inflammatory drugs. However, it is not known whether mPGES-1 inhibitors could be devoid of cardiovascular side effects. The aim of this study was to compare, in vitro, the effects of mPGES-1 and COX-2 inhibitors on vascular tone in human blood vessels.

EXPERIMENTAL APPROACH

The vascular tone and prostanoid release from internal mammary artery (IMA) and saphenous vein (SV) incubated for 30 min with inhibitors of mPGES-1 or COX-2 were investigated under normal and inflammatory conditions.

KEY RESULTS

In inflammatory conditions, mPGES-1 and COX-2 proteins were more expressed, and increased levels of PGE and PGI were released. COX-2 and NOS inhibitors increased noradrenaline induced vascular contractions in IMA under inflammatory conditions while no effect was observed in SV. Interestingly, the mPGES-1 inhibitor significantly reduced (30-40%) noradrenaline-induced contractions in both vessels. This effect was reversed by an IP (PGI receptor) antagonist but not modified by NOS inhibition. Moreover, PGI release was increased with the mPGES-1 inhibitor and decreased with the COX-2 inhibitor, while both inhibitors reduced PGE release.

CONCLUSIONS AND IMPLICATIONS

In contrast to COX-2 inhibition, inhibition of mPGES-1 reduced vasoconstriction by increasing PGI synthesis. Targeting mPGES-1 could provide a lower risk of cardiovascular side effects, compared with those of the COX-2 inhibitors.

LINKED ARTICLES

This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.

摘要

背景与目的

环氧化酶-2(COX-2)抑制剂对心血管系统的副作用可能与前列腺素(PG)I 合成减少有关。微粒体 PGE 合酶-1(mPGES-1)催化 COX 衍生的 PGH 转化为 PGE。这种酶在炎症条件下被诱导,是新型抗炎药物的一个有吸引力的靶点。然而,目前尚不清楚 mPGES-1 抑制剂是否可以没有心血管副作用。本研究旨在比较 mPGES-1 和 COX-2 抑制剂在人血管中的血管张力作用。

实验方法

在正常和炎症条件下,用 mPGES-1 或 COX-2 抑制剂孵育 30 分钟后,检测内乳动脉(IMA)和隐静脉(SV)的血管张力和前列腺素释放。

主要结果

在炎症条件下,mPGES-1 和 COX-2 蛋白表达增加,PGI 和 PGE 水平升高。COX-2 和 NOS 抑制剂增加了 IMA 中去甲肾上腺素诱导的血管收缩,而在 SV 中没有观察到这种作用。有趣的是,mPGES-1 抑制剂显著降低了两种血管中去甲肾上腺素诱导的收缩(30-40%)。这种作用被 IP(PGI 受体)拮抗剂逆转,但不受 NOS 抑制的影响。此外,mPGES-1 抑制剂增加了 PGI 释放,而 COX-2 抑制剂降低了 PGE 释放,同时两者都降低了 PGE 释放。

结论与意义

与 COX-2 抑制不同,mPGES-1 抑制通过增加 PGI 合成减少血管收缩。与 COX-2 抑制剂相比,靶向 mPGES-1 可能降低心血管副作用的风险。

相关文章

本文是一个以“靶向炎症以降低心血管疾病风险”为主题的专题的一部分。要查看本专题中的其他文章,请访问 http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetochttp://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc。

相似文献

1
2
Inhibition of microsomal prostaglandin E-synthase-1 (mPGES-1) selectively suppresses PGE in an in vitro equine inflammation model.
Vet Immunol Immunopathol. 2017 Oct;192:33-40. doi: 10.1016/j.vetimm.2017.09.008. Epub 2017 Oct 3.
3
Control of human vascular tone by prostanoids derived from perivascular adipose tissue.
Prostaglandins Other Lipid Mediat. 2013 Dec;107:13-7. doi: 10.1016/j.prostaglandins.2013.06.002. Epub 2013 Jun 17.
6
The anti-inflammatory and vasoprotective properties of mPGES-1 inhibition offer promising therapeutic potential.
Expert Opin Ther Targets. 2023 Jul-Dec;27(11):1115-1123. doi: 10.1080/14728222.2023.2285785. Epub 2023 Dec 7.
7
Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis.
Cardiovasc Res. 2020 Oct 1;116(12):1972-1980. doi: 10.1093/cvr/cvz290.
10
Decreased vasorelaxation induced by iloprost during acute inflammation in human internal mammary artery.
Eur J Pharmacol. 2017 Jun 5;804:31-37. doi: 10.1016/j.ejphar.2017.03.060. Epub 2017 Mar 31.

引用本文的文献

1
Inhibition of DYRK1B BY C81 impedes inflammatory processes in leukocytes by reducing STAT3 activity.
Cell Mol Life Sci. 2025 Feb 22;82(1):85. doi: 10.1007/s00018-025-05579-y.
2
Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease.
Int J Mol Sci. 2024 Aug 2;25(15):8465. doi: 10.3390/ijms25158465.
5
Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E and Leukotriene Biosynthesis Inhibitors.
ACS Med Chem Lett. 2022 Dec 9;14(1):26-34. doi: 10.1021/acsmedchemlett.2c00343. eCollection 2023 Jan 12.
6
Biosynthesis of prostaglandin 15dPGJ -glutathione and 15dPGJ-cysteine conjugates in macrophages and mast cells via MGST3.
J Lipid Res. 2022 Dec;63(12):100310. doi: 10.1016/j.jlr.2022.100310. Epub 2022 Nov 9.
7
Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease.
Int J Mol Sci. 2021 Nov 6;22(21):12029. doi: 10.3390/ijms222112029.
8
Inhibition of microsomal prostaglandin E synthase-1 ameliorates acute lung injury in mice.
J Transl Med. 2021 Aug 9;19(1):340. doi: 10.1186/s12967-021-03016-9.
9
Enhanced mPGES-1 Contributes to PD-Related Peritoneal Fibrosis via Activation of the NLRP3 Inflammasome.
Front Med (Lausanne). 2021 May 18;8:675363. doi: 10.3389/fmed.2021.675363. eCollection 2021.
10
Engineering 'Enzymelink' for screening lead compounds to inhibit mPGES-1 while maintaining prostacyclin synthase activity.
Future Med Chem. 2021 Jul;13(13):1091-1103. doi: 10.4155/fmc-2021-0056. Epub 2021 Jun 3.

本文引用的文献

1
Deletion of mPGES-1 affects platelet functions in mice.
Clin Sci (Lond). 2016 Dec 1;130(24):2295-2303. doi: 10.1042/CS20160463. Epub 2016 Oct 7.
2
Identification and Characterization of Novel Microsomal Prostaglandin E Synthase-1 Inhibitors for Analgesia.
J Pharmacol Exp Ther. 2016 Mar;356(3):635-44. doi: 10.1124/jpet.115.228932. Epub 2016 Jan 6.
3
The Concise Guide to PHARMACOLOGY 2015/16: Enzymes.
Br J Pharmacol. 2015 Dec;172(24):6024-109. doi: 10.1111/bph.13354.
4
The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors.
Br J Pharmacol. 2015 Dec;172(24):5979-6023. doi: 10.1111/bph.13353.
5
The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors.
Br J Pharmacol. 2015 Dec;172(24):5744-869. doi: 10.1111/bph.13348.
6
The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1054-68. doi: 10.1093/nar/gkv1037. Epub 2015 Oct 12.
7
Pharmacodynamic comparison of LY3023703, a novel microsomal prostaglandin e synthase 1 inhibitor, with celecoxib.
Clin Pharmacol Ther. 2016 Mar;99(3):274-84. doi: 10.1002/cpt.260. Epub 2015 Nov 25.
8
Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders.
Biochem Pharmacol. 2015 Nov 1;98(1):1-15. doi: 10.1016/j.bcp.2015.06.022. Epub 2015 Jun 27.
9
Experimental design and analysis and their reporting: new guidance for publication in BJP.
Br J Pharmacol. 2015 Jul;172(14):3461-71. doi: 10.1111/bph.12856.
10
Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms.
Prostaglandins Other Lipid Mediat. 2015 Sep;121(Pt A):70-82. doi: 10.1016/j.prostaglandins.2015.04.008. Epub 2015 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验