Suppr超能文献

大脑连通性中负相关的意义。

The significance of negative correlations in brain connectivity.

作者信息

Zhan Liang, Jenkins Lisanne M, Wolfson Ouri E, GadElkarim Johnson Jonaris, Nocito Kevin, Thompson Paul M, Ajilore Olusola A, Chung Moo K, Leow Alex D

机构信息

Computer Engineering Program, University of Wisconsin-Stout, Menomonie, Wisconsin.

Department of Psychiatry, University of Illinois, Chicago, Illinois.

出版信息

J Comp Neurol. 2017 Oct 15;525(15):3251-3265. doi: 10.1002/cne.24274. Epub 2017 Jul 16.

Abstract

Understanding the modularity of functional magnetic resonance imaging (fMRI)-derived brain networks or "connectomes" can inform the study of brain function organization. However, fMRI connectomes additionally involve negative edges, which may not be optimally accounted for by existing approaches to modularity that variably threshold, binarize, or arbitrarily weight these connections. Consequently, many existing Q maximization-based modularity algorithms yield variable modular structures. Here, we present an alternative complementary approach that exploits how frequent the blood-oxygen-level-dependent (BOLD) signal correlation between two nodes is negative. We validated this novel probability-based modularity approach on two independent publicly-available resting-state connectome data sets (the Human Connectome Project [HCP] and the 1,000 functional connectomes) and demonstrated that negative correlations alone are sufficient in understanding resting-state modularity. In fact, this approach (a) permits a dual formulation, leading to equivalent solutions regardless of whether one considers positive or negative edges; (b) is theoretically linked to the Ising model defined on the connectome, thus yielding modularity result that maximizes data likelihood. Additionally, we were able to detect novel and consistent sex differences in modularity in both data sets. As data sets like HCP become widely available for analysis by the neuroscience community at large, alternative and perhaps more advantageous computational tools to understand the neurobiological information of negative edges in fMRI connectomes are increasingly important.

摘要

理解功能磁共振成像(fMRI)衍生的脑网络或“连接组”的模块化可以为脑功能组织的研究提供信息。然而,fMRI连接组还涉及负边,现有的模块化方法(对这些连接进行可变阈值处理、二值化或任意加权)可能无法对其进行最佳解释。因此,许多现有的基于Q最大化的模块化算法会产生可变的模块化结构。在这里,我们提出了一种替代的补充方法,该方法利用两个节点之间的血氧水平依赖(BOLD)信号相关性为负的频率。我们在两个独立的公开可用的静息态连接组数据集(人类连接组计划[HCP]和1000个功能连接组)上验证了这种基于概率的新型模块化方法,并证明仅负相关性就足以理解静息态模块化。事实上,这种方法(a)允许双重表述,无论考虑正边还是负边,都能得到等效的解决方案;(b)在理论上与在连接组上定义的伊辛模型相关联,从而产生使数据似然性最大化的模块化结果。此外,我们能够在两个数据集中检测到模块化方面新的且一致的性别差异。随着像HCP这样的数据集越来越广泛地可供广大神经科学界进行分析,用于理解fMRI连接组中负边神经生物学信息的替代且可能更具优势的计算工具变得越来越重要。

相似文献

1
The significance of negative correlations in brain connectivity.大脑连通性中负相关的意义。
J Comp Neurol. 2017 Oct 15;525(15):3251-3265. doi: 10.1002/cne.24274. Epub 2017 Jul 16.
4
Thresholding functional connectomes by means of mixture modeling.通过混合建模对功能连接体进行阈值处理。
Neuroimage. 2018 May 1;171:402-414. doi: 10.1016/j.neuroimage.2018.01.003. Epub 2018 Jan 5.
10
Normative pathways in the functional connectome.功能连接组学中的规范途径。
Neuroimage. 2019 Jan 1;184:317-334. doi: 10.1016/j.neuroimage.2018.09.028. Epub 2018 Sep 14.

引用本文的文献

10

本文引用的文献

2
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
8
Modular Brain Networks.模块化脑网络
Annu Rev Psychol. 2016;67:613-40. doi: 10.1146/annurev-psych-122414-033634. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验