迈向 HCP 风格的猕猴连接组学:24 通道 3T 多通道线圈、MRI 序列和预处理。

Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.

机构信息

Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.

Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St Louis, MO, USA; St. Luke's Hospital, St. Louis, Missouri, USA.

出版信息

Neuroimage. 2020 Jul 15;215:116800. doi: 10.1016/j.neuroimage.2020.116800. Epub 2020 Apr 8.

Abstract

Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain.

摘要

猕猴是一种重要的动物模型,通过对其进行侵入性研究,可以更好地了解灵长类动物(包括人类)的皮质组织。然而,用于非侵入性图像采集(例如 MRI RF 线圈和脉冲序列协议)和图像数据预处理的工具和方法落后于为人类开发的工具和方法。为了解决较小的猕猴大脑的结构和功能特征问题,需要高空间、高时间和高角度分辨率,结合高信噪比,以确保良好的图像质量。为了解决这些挑战,我们开发了一种用于 3-T MRI 的猕猴 24 通道接收线圈,该线圈具有并行成像功能。该线圈使人类连接组计划(HCP)的图像采集协议能够适应活体猕猴大脑。此外,我们还将 HCP 预处理方法改编为猕猴大脑,包括结构、功能磁共振成像(fMRI)和弥散磁共振成像(dMRI)的空间最小预处理。该线圈提供了必要的高信噪比和高效率的数据采集,允许对 dMRI 和 fMRI 进行四到五倍加速。皮层的自动 FreeSurfer 分割、皮层表面重建、fMRI 中的伪影和干扰信号去除以及 dMRI 的失真校正都表现良好,基本神经生物学测量的整体质量与 HCP 相当。与公开共享数据集相比,fMRI 中的功能连接分析显示出较高的灵敏度。基于束路追踪的连接估计与使用离体 dMRI 获得的连接相似。使用这种 HCP 风格的活体猕猴 MRI 数据,通过使用以前仅在人类大脑研究中可用的高级方法,分析皮质结构以及功能和结构连接具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索