Suppr超能文献

治疗的临床研究及抗炎机制

Clinical studies and anti-inflammatory mechanisms of treatments.

作者信息

French Jacqueline A, Koepp Matthias, Naegelin Yvonne, Vigevano Federico, Auvin Stéphane, Rho Jong M, Rosenberg Evan, Devinsky Orrin, Olofsson Peder S, Dichter Marc A

机构信息

Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York City, New York, U.S.A.

Institute of Neurology, University College London, London, United Kingdom.

出版信息

Epilepsia. 2017 Jul;58 Suppl 3(Suppl 3):69-82. doi: 10.1111/epi.13779.

Abstract

In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A number of animal models have now been used to identify inflammation as a major underlying mechanism of both chronic seizures and the epileptogenic process. These models have demonstrated that specific anti-inflammatory treatments can be effective at both suppressing chronic seizures and interfering with the process of epileptogenesis. Some of these have already been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical trials of both "conventional, broad spectrum" anti-inflammatory agents and novel new approaches to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A summary of some of those approaches appears below, as well as a discussion of the issues facing clinical trials in this new domain.

摘要

在这个激动人心的时代,我们距离将一种抗炎疗法应用于临床以预防、改善和/或抑制癫痫发作越来越近。目前,尚不清楚这种方法具体包括哪些内容,以及会采取何种形式。无论最终进入临床的是何种疗法,在临床试验方面都会有一些共性。现在已经有许多动物模型被用于确定炎症是慢性癫痫发作和癫痫发生过程的主要潜在机制。这些模型表明,特定的抗炎治疗在抑制慢性癫痫发作和干扰癫痫发生过程方面都可能有效。其中一些已经在早期临床试验中得到评估。可以预期,很快将会有更多关于“传统、广谱”抗炎药物以及利用特定抗炎疗法与药物或其他治疗干预措施的新方法的临床试验。以下是其中一些方法的总结,以及对这个新领域临床试验所面临问题的讨论。

相似文献

1
Clinical studies and anti-inflammatory mechanisms of treatments.
Epilepsia. 2017 Jul;58 Suppl 3(Suppl 3):69-82. doi: 10.1111/epi.13779.
2
Inflammation and Epilepsy: Preclinical Findings and Potential Clinical Translation.
Curr Pharm Des. 2017;23(37):5569-5576. doi: 10.2174/1381612823666170926113754.
3
Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis?
Expert Opin Drug Saf. 2015 Apr;14(4):583-92. doi: 10.1517/14740338.2015.1010508. Epub 2015 Feb 3.
4
Neuroinflammatory targets and treatments for epilepsy validated in experimental models.
Epilepsia. 2017 Jul;58 Suppl 3(Suppl 3):27-38. doi: 10.1111/epi.13783.
5
Inflammation and reactive oxygen species as disease modifiers in epilepsy.
Neuropharmacology. 2020 May 1;167:107742. doi: 10.1016/j.neuropharm.2019.107742. Epub 2019 Aug 14.
6
The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
Neuropharmacology. 2020 May 1;167:107605. doi: 10.1016/j.neuropharm.2019.04.011. Epub 2019 Apr 11.
7
Preventing epileptogenesis: A realistic goal?
Pharmacol Res. 2016 Aug;110:96-100. doi: 10.1016/j.phrs.2016.05.009. Epub 2016 May 10.
8
Neuroinflammation impact in epileptogenesis and new treatment strategy.
Behav Pharmacol. 2019 Dec;30(8):661-675. doi: 10.1097/FBP.0000000000000513.
9
Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection.
Epilepsy Behav. 2017 May;70(Pt B):319-327. doi: 10.1016/j.yebeh.2016.11.006. Epub 2017 Feb 9.

引用本文的文献

1
The cellular distribution of P2X7, P2Y6, and P2Y12 during or after pilocarpine-induced status epilepticus and literature review.
Brain Circ. 2024 Dec 28;10(4):343-353. doi: 10.4103/bc.bc_27_24. eCollection 2024 Oct-Dec.
3
Unveiling the anti-inflammatory potential of Acalypha indica L. and analyzing its research trend: digging deep to learn deep.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Apr;397(4):1935-1956. doi: 10.1007/s00210-023-02734-9. Epub 2023 Oct 5.
5
An insight into the neuroprotective and anti-neuroinflammatory effects and mechanisms of .
Front Pharmacol. 2023 Jan 5;13:1035220. doi: 10.3389/fphar.2022.1035220. eCollection 2022.
7
Brivaracetam exhibits mild pro-inflammatory features in an astrocyte-microglia co-culture model of inflammation.
Front Cell Neurosci. 2022 Nov 3;16:995861. doi: 10.3389/fncel.2022.995861. eCollection 2022.
8
Characterization of Immune-Related Genes and Immune Infiltration Features in Epilepsy by Multi-Transcriptome Data.
J Inflamm Res. 2022 May 5;15:2855-2876. doi: 10.2147/JIR.S360743. eCollection 2022.
9
Potential plants for inflammatory dysfunction in the SARS-CoV-2 infection.
Inflammopharmacology. 2022 Jun;30(3):749-773. doi: 10.1007/s10787-022-00981-5. Epub 2022 Apr 7.
10
Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: Assessment of neuroinflammation.
Epilepsia Open. 2022 Aug;7 Suppl 1(Suppl 1):S68-S80. doi: 10.1002/epi4.12590. Epub 2022 Mar 16.

本文引用的文献

1
Neuronal Circuits Modulate Antigen Flow Through Lymph Nodes.
Bioelectron Med. 2016;3:18-28. doi: 10.15424/bioelectronmed.2016.00001. Epub 2016 Dec 20.
2
Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.
J Intern Med. 2017 Jul;282(1):46-63. doi: 10.1111/joim.12611. Epub 2017 Apr 18.
3
Quality-of-life metrics with vagus nerve stimulation for epilepsy from provider survey data.
Epilepsy Behav. 2017 Jan;66:4-9. doi: 10.1016/j.yebeh.2016.10.005. Epub 2016 Dec 11.
4
Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy.
Neurobiol Dis. 2017 Mar;99:12-23. doi: 10.1016/j.nbd.2016.12.007. Epub 2016 Dec 9.
5
Febrile Infection-Related Epilepsy Syndrome: Clinical Review and Hypotheses of Epileptogenesis.
Neuropediatrics. 2017 Feb;48(1):5-18. doi: 10.1055/s-0036-1597271. Epub 2016 Dec 5.
6
Understanding Genotypes and Phenotypes in Epileptic Encephalopathies.
Mol Syndromol. 2016 Sep;7(4):172-181. doi: 10.1159/000448530. Epub 2016 Aug 20.
7
Febrile infection-related epilepsy syndrome treated with anakinra.
Ann Neurol. 2016 Dec;80(6):939-945. doi: 10.1002/ana.24806. Epub 2016 Nov 14.
8
Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms.
Acta Neuropsychiatr. 2017 Feb;29(1):1-16. doi: 10.1017/neu.2016.47. Epub 2016 Oct 3.
9
Blood pressure regulation by CD4 lymphocytes expressing choline acetyltransferase.
Nat Biotechnol. 2016 Oct;34(10):1066-1071. doi: 10.1038/nbt.3663. Epub 2016 Sep 12.
10
Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5665-74. doi: 10.1073/pnas.1604263113. Epub 2016 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验