Suppr超能文献

开发一个实用的自杀风险预测模型,以针对退伍军人健康管理局的高危患者。

Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration.

机构信息

Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts, USA.

VISN 19 Mental Illness Research, Education and Clinical Care Center, Denver, Colorado, USA.

出版信息

Int J Methods Psychiatr Res. 2017 Sep;26(3). doi: 10.1002/mpr.1575. Epub 2017 Jul 4.

Abstract

OBJECTIVES

The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to target care. Initial analyses are reported here.

METHODS

A penalized logistic regression model was compared with an earlier proof-of-concept logistic model. Exploratory analyses then considered commonly-used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified in the National Death Index as having died by suicide in fiscal years 2009-2011 who used VHA services the year of their death or prior year and a 1% probability sample of time-matched VHA service users alive at the index date (n = 2,112,008).

RESULTS

A penalized logistic model with 61 predictors had sensitivity comparable to the proof-of-concept model (which had 381 predictors) at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest predicted risk.

CONCLUSIONS

Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes with a discussion of other practical issues that might be explored to increase model performance.

摘要

目的

美国退伍军人健康管理局(VHA)已开始使用预测模型来识别有高自杀风险的退伍军人,以便有针对性地提供护理。本文报告了初步分析结果。

方法

本文比较了一种惩罚逻辑回归模型与早期的概念验证逻辑模型,并进行了探索性分析,考虑了常用的机器学习算法。分析基于电子病历,包括在 2009-2011 财年被国家死亡索引归类为自杀死亡的所有 6360 人,他们在死亡当年或前一年使用了 VHA 服务,以及与索引日期存活的 VHA 服务使用者 1%概率样本(n=2112008 人)。

结果

具有 61 个预测因子的惩罚逻辑模型在目标阈值下与概念验证模型(具有 381 个预测因子)的敏感性相当。机器学习算法的敏感性相对相似,最高的是贝叶斯加性回归树,有 10.7%的自杀发生在预测风险最高的 1.0%的退伍军人中,有 28.1%发生在预测风险最高的 5.0%的退伍军人中。

结论

基于这些结果,VHA 正在初始干预实施中使用惩罚逻辑回归。本文最后讨论了可能有助于提高模型性能的其他实际问题。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验