O'Reilly Lauren M, Fazel Seena, Rickert Martin E, Kuja-Halkola Ralf, Cederlof Martin, Hellner Clara, Larsson Henrik, Lichtenstein Paul, D'Onofrio Brian M
Indiana University School of Medicine.
Department of Psychiatry, University of Oxford.
Clin Psychol Sci. 2025 May;13(3):614-631. doi: 10.1177/21677026241301298. Epub 2024 Dec 20.
In this article, we assessed the performance of several predictive modeling algorithms of suicide attempt resulting in inpatient hospitalization or suicide among youths ages 9 to 18 ( = 34,528) after contact (6-12 months) with a mental-health specialist in Stockholm, Sweden, from 2006 to 2012. Using 209 predictors across domains (e.g., clinical, demographic, family, neighborhood, social) identified from national registers, we applied standard logistic regression, regularized logistic regression, and machine-learning algorithms (i.e., random forests, gradient boosting, support vector machines). Standard logistic regression (area under the receiver operating characteristic curve [AUC] = 0.77, 95% confidence interval [CI] = [0.72, 0.82]) and random-forest models (AUC = 0.80, 95% CI = [0.74, 0.86]) demonstrated the highest AUCs. Sensitivities ranged from 0.33 (support vector machines) to 0.91 (standard logistic regression). Although the study was underpowered to detect a difference between logistic regression and machinelearning algorithms (outcome prevalence = 0.7%), performance metrics were similar across models. Logistic regression is not clearly worse than machine-learning approaches. Ongoing research is needed to examine how prediction models can augment clinical decision-making.
在本文中,我们评估了2006年至2012年期间,瑞典斯德哥尔摩9至18岁(n = 34,528)的青少年在与心理健康专家接触(6 - 12个月)后,导致住院治疗或自杀的几种自杀未遂预测建模算法的性能。我们使用从国家登记册中识别出的209个跨领域预测因素(如临床、人口统计学、家庭、邻里、社会等),应用了标准逻辑回归、正则化逻辑回归和机器学习算法(即随机森林、梯度提升、支持向量机)。标准逻辑回归(受试者工作特征曲线下面积[AUC] = 0.77,95%置信区间[CI] = [0.72, 0.82])和随机森林模型(AUC = 0.80,95% CI = [0.74, 0.86])表现出最高的AUC值。灵敏度范围从0.33(支持向量机)到0.91(标准逻辑回归)。尽管该研究的效能不足以检测逻辑回归和机器学习算法之间的差异(结局患病率 = 0.7%),但各模型的性能指标相似。逻辑回归并不明显比机器学习方法差。需要进行进一步研究以探讨预测模型如何增强临床决策。
Clin Orthop Relat Res. 2024-8-1
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2024-10-17
J Stat Softw. 2023
NPJ Digit Med. 2023-1-24
Psychiatr Serv. 2023-6-1
Artif Intell Med. 2022-10
Evid Based Ment Health. 2022-11
Psychiatr Serv. 2021-2-1