文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估机器学习在预测青少年与心理健康专科护理接触后长达1年的自杀行为中的作用。

Evaluating Machine Learning for Predicting Youth Suicidal Behavior Up to 1 Year After Contact With Mental-Health Specialty Care.

作者信息

O'Reilly Lauren M, Fazel Seena, Rickert Martin E, Kuja-Halkola Ralf, Cederlof Martin, Hellner Clara, Larsson Henrik, Lichtenstein Paul, D'Onofrio Brian M

机构信息

Indiana University School of Medicine.

Department of Psychiatry, University of Oxford.

出版信息

Clin Psychol Sci. 2025 May;13(3):614-631. doi: 10.1177/21677026241301298. Epub 2024 Dec 20.


DOI:10.1177/21677026241301298
PMID:40771879
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12327383/
Abstract

In this article, we assessed the performance of several predictive modeling algorithms of suicide attempt resulting in inpatient hospitalization or suicide among youths ages 9 to 18 ( = 34,528) after contact (6-12 months) with a mental-health specialist in Stockholm, Sweden, from 2006 to 2012. Using 209 predictors across domains (e.g., clinical, demographic, family, neighborhood, social) identified from national registers, we applied standard logistic regression, regularized logistic regression, and machine-learning algorithms (i.e., random forests, gradient boosting, support vector machines). Standard logistic regression (area under the receiver operating characteristic curve [AUC] = 0.77, 95% confidence interval [CI] = [0.72, 0.82]) and random-forest models (AUC = 0.80, 95% CI = [0.74, 0.86]) demonstrated the highest AUCs. Sensitivities ranged from 0.33 (support vector machines) to 0.91 (standard logistic regression). Although the study was underpowered to detect a difference between logistic regression and machinelearning algorithms (outcome prevalence = 0.7%), performance metrics were similar across models. Logistic regression is not clearly worse than machine-learning approaches. Ongoing research is needed to examine how prediction models can augment clinical decision-making.

摘要

在本文中,我们评估了2006年至2012年期间,瑞典斯德哥尔摩9至18岁(n = 34,528)的青少年在与心理健康专家接触(6 - 12个月)后,导致住院治疗或自杀的几种自杀未遂预测建模算法的性能。我们使用从国家登记册中识别出的209个跨领域预测因素(如临床、人口统计学、家庭、邻里、社会等),应用了标准逻辑回归、正则化逻辑回归和机器学习算法(即随机森林、梯度提升、支持向量机)。标准逻辑回归(受试者工作特征曲线下面积[AUC] = 0.77,95%置信区间[CI] = [0.72, 0.82])和随机森林模型(AUC = 0.80,95% CI = [0.74, 0.86])表现出最高的AUC值。灵敏度范围从0.33(支持向量机)到0.91(标准逻辑回归)。尽管该研究的效能不足以检测逻辑回归和机器学习算法之间的差异(结局患病率 = 0.7%),但各模型的性能指标相似。逻辑回归并不明显比机器学习方法差。需要进行进一步研究以探讨预测模型如何增强临床决策。

相似文献

[1]
Evaluating Machine Learning for Predicting Youth Suicidal Behavior Up to 1 Year After Contact With Mental-Health Specialty Care.

Clin Psychol Sci. 2025-5

[2]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[3]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[4]
Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty.

Clin Orthop Relat Res. 2024-8-1

[5]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[6]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[7]
Proposal for Using AI to Assess Clinical Data Integrity and Generate Metadata: Algorithm Development and Validation.

JMIR Med Inform. 2025-6-30

[8]
Predicting mortality risk following major lower extremity amputation using machine learning.

J Vasc Surg. 2025-5-1

[9]
Predicting seizure recurrence after status epilepticus: a multicenter exploratory machine learning approach.

Seizure. 2025-6-20

[10]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

本文引用的文献

[1]
Risk of death by suicide following self-harm presentations to healthcare: development and validation of a multivariable clinical prediction rule (OxSATS).

BMJ Ment Health. 2023-5

[2]
Elastic Net Regularization Paths for All Generalized Linear Models.

J Stat Softw. 2023

[3]
Making machine learning matter to clinicians: model actionability in medical decision-making.

NPJ Digit Med. 2023-1-24

[4]
Health Diagnoses and Service Utilization in the Year Before Youth and Young Adult Suicide.

Psychiatr Serv. 2023-6-1

[5]
Suicidal behaviour prediction models using machine learning techniques: A systematic review.

Artif Intell Med. 2022-10

[6]
Risk factors for suicide in adults: systematic review and meta-analysis of psychological autopsy studies.

Evid Based Ment Health. 2022-11

[7]
Implementing Machine Learning Models for Suicide Risk Prediction in Clinical Practice: Focus Group Study With Hospital Providers.

JMIR Form Res. 2022-3-11

[8]
A direct comparison of theory-driven and machine learning prediction of suicide: A meta-analysis.

PLoS One. 2021

[9]
Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data.

PLoS Med. 2020-11

[10]
Patient Feedback on the Use of Predictive Analytics for Suicide Prevention.

Psychiatr Serv. 2021-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索