Suppr超能文献

评估机器学习在预测青少年与心理健康专科护理接触后长达1年的自杀行为中的作用。

Evaluating Machine Learning for Predicting Youth Suicidal Behavior Up to 1 Year After Contact With Mental-Health Specialty Care.

作者信息

O'Reilly Lauren M, Fazel Seena, Rickert Martin E, Kuja-Halkola Ralf, Cederlof Martin, Hellner Clara, Larsson Henrik, Lichtenstein Paul, D'Onofrio Brian M

机构信息

Indiana University School of Medicine.

Department of Psychiatry, University of Oxford.

出版信息

Clin Psychol Sci. 2025 May;13(3):614-631. doi: 10.1177/21677026241301298. Epub 2024 Dec 20.

Abstract

In this article, we assessed the performance of several predictive modeling algorithms of suicide attempt resulting in inpatient hospitalization or suicide among youths ages 9 to 18 ( = 34,528) after contact (6-12 months) with a mental-health specialist in Stockholm, Sweden, from 2006 to 2012. Using 209 predictors across domains (e.g., clinical, demographic, family, neighborhood, social) identified from national registers, we applied standard logistic regression, regularized logistic regression, and machine-learning algorithms (i.e., random forests, gradient boosting, support vector machines). Standard logistic regression (area under the receiver operating characteristic curve [AUC] = 0.77, 95% confidence interval [CI] = [0.72, 0.82]) and random-forest models (AUC = 0.80, 95% CI = [0.74, 0.86]) demonstrated the highest AUCs. Sensitivities ranged from 0.33 (support vector machines) to 0.91 (standard logistic regression). Although the study was underpowered to detect a difference between logistic regression and machinelearning algorithms (outcome prevalence = 0.7%), performance metrics were similar across models. Logistic regression is not clearly worse than machine-learning approaches. Ongoing research is needed to examine how prediction models can augment clinical decision-making.

摘要

在本文中,我们评估了2006年至2012年期间,瑞典斯德哥尔摩9至18岁(n = 34,528)的青少年在与心理健康专家接触(6 - 12个月)后,导致住院治疗或自杀的几种自杀未遂预测建模算法的性能。我们使用从国家登记册中识别出的209个跨领域预测因素(如临床、人口统计学、家庭、邻里、社会等),应用了标准逻辑回归、正则化逻辑回归和机器学习算法(即随机森林、梯度提升、支持向量机)。标准逻辑回归(受试者工作特征曲线下面积[AUC] = 0.77,95%置信区间[CI] = [0.72, 0.82])和随机森林模型(AUC = 0.80,95% CI = [0.74, 0.86])表现出最高的AUC值。灵敏度范围从0.33(支持向量机)到0.91(标准逻辑回归)。尽管该研究的效能不足以检测逻辑回归和机器学习算法之间的差异(结局患病率 = 0.7%),但各模型的性能指标相似。逻辑回归并不明显比机器学习方法差。需要进行进一步研究以探讨预测模型如何增强临床决策。

相似文献

本文引用的文献

10
Patient Feedback on the Use of Predictive Analytics for Suicide Prevention.患者对预测分析在预防自杀中的应用的反馈。
Psychiatr Serv. 2021 Feb 1;72(2):129-135. doi: 10.1176/appi.ps.202000092. Epub 2020 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验