Suppr超能文献

纳米结构矿物涂层稳定蛋白质用于治疗性递药。

Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.

机构信息

Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, 53705, USA.

Comparative Orthopedic Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.

出版信息

Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201701255. Epub 2017 Jul 4.

Abstract

Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine.

摘要

蛋白质在制剂、储存和输送过程中,由于其脆弱的结构构象,往往会失去生物活性。因此,无法在控制释放系统中稳定蛋白质是药物输送的主要障碍。在这里,提出了一种受骨矿物质启发的蛋白质稳定策略,该策略使用医疗器械上的纳米结构矿物质涂层。结合在纳米结构涂层中的蛋白质表现出对极端外部应激源的稳定性增强,包括有机溶剂、蛋白酶和环氧乙烷气体灭菌。蛋白质稳定化效应归因于蛋白质构象结构的维持,这与矿物质涂层的纳米级特征尺寸密切相关。从纳米结构矿物质涂层中释放的碱性成纤维细胞生长因子 (bFGF) 在释放过程中保持其生物活性数周,而从常用的聚合物微球中释放时,其活性保持不到 7 天。使用涂有矿物质的手术缝线输送生长因子 bFGF 和血管内皮生长因子可显著改善兔模型中跟腱的功能愈合,导致血管化增加、更成熟的胶原纤维组织和机械性能提高两倍。这项研究的结果表明,蛋白质与纳米结构矿物质之间的仿生相互作用为药物输送和再生医学领域的蛋白质稳定提供了一种新的、广泛适用的机制。

相似文献

2
Effects of BMP-12-releasing sutures on Achilles tendon healing.释放骨形态发生蛋白-12的缝线对跟腱愈合的影响。
Tissue Eng Part A. 2015 Mar;21(5-6):916-27. doi: 10.1089/ten.TEA.2014.0001. Epub 2014 Dec 11.

引用本文的文献

1
Advances and challenges in biomaterials for tendon and enthesis repair.用于肌腱和附着点修复的生物材料的进展与挑战
Bioact Mater. 2025 Feb 20;47:531-545. doi: 10.1016/j.bioactmat.2025.01.001. eCollection 2025 May.
7
Growth factors in the treatment of Achilles tendon injury.生长因子在跟腱损伤治疗中的应用
Front Bioeng Biotechnol. 2023 Sep 14;11:1250533. doi: 10.3389/fbioe.2023.1250533. eCollection 2023.

本文引用的文献

6
Protein-inorganic hybrid nanoflowers.蛋白质-无机杂化纳米花。
Nat Nanotechnol. 2012 Jun 3;7(7):428-32. doi: 10.1038/nnano.2012.80.
7
Mechanistic insights into protein precipitation by alcohol.酒精致蛋白沉淀的机制研究。
Int J Biol Macromol. 2012 Apr 1;50(3):865-71. doi: 10.1016/j.ijbiomac.2011.11.005. Epub 2011 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验