Suppr超能文献

反刍动物瘤胃细菌右旋糖分解琥珀酸弧菌中的谷氨酰胺合成酶活性

Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens.

作者信息

Patterson J A, Hespell R B

出版信息

Appl Environ Microbiol. 1985 Oct;50(4):1014-20. doi: 10.1128/aem.50.4.1014-1020.1985.

Abstract

Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.

摘要

右旋糖分解琥珀酸弧菌C18被发现具有谷氨酰胺合成酶(GS)、脲酶、谷氨酸脱氢酶以及其他几种氮同化酶。当在氨限制条件下进行连续培养时,GS和脲酶的活性都很高,而谷氨酸脱氢酶的活性很低,但在氨充足的情况下生长时,观察到的活性模式则相反。向氨限制培养物中添加高浓度(15 mM)的氯化铵,通过γ-谷氨酰转移酶或用细胞或提取物进行的正向测定法测量,会导致GS活性迅速丧失。脲酶、谷氨酸脱氢酶或丙酮酸激酶没有出现类似的活性丧失情况。添加氯霉素和利福平并不能阻止GS活性的丧失。通过在缓冲液中洗涤或孵育细胞,或者向细胞提取物中添加蛇毒磷酸二酯酶,可以恢复GS活性。锰抑制未处理细胞的GS活性(正向测定),但刺激氨处理细胞中的GS活性。丙氨酸、甘氨酸以及可能的丝氨酸对GS活性有抑制作用。GS活性的正向测定和γ-谷氨酰转移酶测定的最佳pH值分别为7.3和7.4。谷氨酸脱氢酶的活性与NADPH相关,在有KCl存在时最适宜。这些数据与右旋糖分解琥珀酸弧菌中GS活性的腺苷酰化-去腺苷酰化控制机制一致,并且在低环境氨水平下,GS途径是氨同化的主要途径。需要ATP的GS活性的快速调节对于这种严格厌氧的瘤胃细菌可能具有生态重要性。

相似文献

1
Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens.
Appl Environ Microbiol. 1985 Oct;50(4):1014-20. doi: 10.1128/aem.50.4.1014-1020.1985.
2
Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium.
Appl Environ Microbiol. 1981 Jul;42(1):89-96. doi: 10.1128/aem.42.1.89-96.1981.
3
Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium.
J Bacteriol. 1980 Feb;141(2):593-602. doi: 10.1128/jb.141.2.593-602.1980.
4
Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya.
Proc Natl Acad Sci U S A. 1981 Jan;78(1):229-33. doi: 10.1073/pnas.78.1.229.
5
Purification and some properties of glutamate dehydrogenase and glutamine synthetase from Paracoccus denitrificans.
J Gen Microbiol. 1992 Aug;138 Pt 8:1587-91. doi: 10.1099/00221287-138-8-1587.
6
The enzymes of the ammonia assimilation in Pseudomonas aeruginosa.
Arch Microbiol. 1980 Feb;124(2-3):197-203. doi: 10.1007/BF00427727.
7
Purification and characterisation of glutamine synthetase from Nocardia corallina.
Antonie Van Leeuwenhoek. 1988;54(6):497-507. doi: 10.1007/BF00588386.
8
Purification and properties of glutamine synthetase from Nocardia asteroides.
Curr Microbiol. 1995 Sep;31(3):193-8. doi: 10.1007/BF00293553.
10
Assimilation of 13NH4+ by Azospirillum brasilense grown under nitrogen limitation and excess.
J Bacteriol. 1987 Sep;169(9):4211-4. doi: 10.1128/jb.169.9.4211-4214.1987.

引用本文的文献

1
Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq.
Curr Res Microb Sci. 2021 Sep 2;2:100064. doi: 10.1016/j.crmicr.2021.100064. eCollection 2021 Dec.
2
Complete Genome Sequencing and Transcriptome Analysis of Nitrogen Metabolism of Strain Z6 Isolated From Dairy Cow Rumen.
Front Microbiol. 2020 Aug 14;11:1826. doi: 10.3389/fmicb.2020.01826. eCollection 2020.
3
Inhibition of Rumen Protozoa by Specific Inhibitors of Lysozyme and Peptidases .
Front Microbiol. 2019 Dec 6;10:2822. doi: 10.3389/fmicb.2019.02822. eCollection 2019.
4
Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis.
Front Microbiol. 2015 Apr 10;6:297. doi: 10.3389/fmicb.2015.00297. eCollection 2015.
6
Utilization of xylooligosaccharides by selected ruminal bacteria.
Appl Environ Microbiol. 1993 Nov;59(11):3557-63. doi: 10.1128/aem.59.11.3557-3563.1993.
7
Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens.
Appl Environ Microbiol. 1986 Jul;52(1):51-8. doi: 10.1128/aem.52.1.51-58.1986.
8
Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1.
Appl Environ Microbiol. 1992 Dec;58(12):4032-7. doi: 10.1128/aem.58.12.4032-4037.1992.
9
Glucose toxicity and inability of Bacteroides ruminicola to regulate glucose transport and utilization.
Appl Environ Microbiol. 1992 Jun;58(6):2040-5. doi: 10.1128/aem.58.6.2040-2045.1992.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Cytochromelinked fermentation in Bacteroides ruminicola.
J Bacteriol. 1962 Oct;84(4):822-8. doi: 10.1128/jb.84.4.822-828.1962.
5
Bacterial species of the rumen.
Bacteriol Rev. 1959 Sep;23(3):125-53. doi: 10.1128/br.23.3.125-153.1959.
6
Characteristics of two new genera of anaerobic curved rods isolated from the rumen of cattle.
J Bacteriol. 1956 Jul;72(1):22-6. doi: 10.1128/jb.72.1.22-26.1956.
7
Ammonia saturation constants for predominant species of rumen bacteria.
J Dairy Sci. 1980 Aug;63(8):1248-63. doi: 10.3168/jds.S0022-0302(80)83076-1.
8
1,4-Naphthoquinone and other nutrient requirements of Succinivibrio dextrinosolvens.
Appl Environ Microbiol. 1982 Aug;44(2):346-50. doi: 10.1128/aem.44.2.346-350.1982.
9
Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium.
J Bacteriol. 1981 Nov;148(2):541-50. doi: 10.1128/jb.148.2.541-550.1981.
10
Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium.
Appl Environ Microbiol. 1981 Jul;42(1):89-96. doi: 10.1128/aem.42.1.89-96.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验