Suppr超能文献

成人及儿童线粒体疾病的肌病理学

Myopathology of Adult and Paediatric Mitochondrial Diseases.

作者信息

Phadke Rahul

机构信息

Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London WC1N 3BG, UK.

Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.

出版信息

J Clin Med. 2017 Jul 4;6(7):64. doi: 10.3390/jcm6070064.

Abstract

Mitochondria are dynamic organelles ubiquitously present in nucleated eukaryotic cells, subserving multiple metabolic functions, including cellular ATP generation by oxidative phosphorylation (OXPHOS). The OXPHOS machinery comprises five transmembrane respiratory chain enzyme complexes (RC). Defective OXPHOS gives rise to mitochondrial diseases (mtD). The incredible phenotypic and genetic diversity of mtD can be attributed at least in part to the RC dual genetic control (nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)) and the complex interaction between the two genomes. Despite the increasing use of next-generation-sequencing (NGS) and various omics platforms in unravelling novel mtD genes and pathomechanisms, current clinical practice for investigating mtD essentially involves a multipronged approach including clinical assessment, metabolic screening, imaging, pathological, biochemical and functional testing to guide molecular genetic analysis. This review addresses the broad muscle pathology landscape including genotype-phenotype correlations in adult and paediatric mtD, the role of immunodiagnostics in understanding some of the pathomechanisms underpinning the canonical features of mtD, and recent diagnostic advances in the field.

摘要

线粒体是普遍存在于有核真核细胞中的动态细胞器,发挥多种代谢功能,包括通过氧化磷酸化(OXPHOS)产生细胞ATP。OXPHOS机制由五个跨膜呼吸链酶复合物(RC)组成。OXPHOS缺陷会导致线粒体疾病(mtD)。mtD令人难以置信的表型和遗传多样性至少部分可归因于RC的双重遗传控制(核DNA(nDNA)和线粒体DNA(mtDNA))以及两个基因组之间的复杂相互作用。尽管在揭示新的mtD基因和发病机制方面越来越多地使用下一代测序(NGS)和各种组学平台,但目前研究mtD的临床实践基本上涉及多管齐下的方法,包括临床评估、代谢筛查、成像、病理、生化和功能测试,以指导分子遗传学分析。本综述探讨了广泛的肌肉病理学领域,包括成人和儿童mtD中的基因型-表型相关性、免疫诊断在理解一些支撑mtD典型特征的发病机制中的作用以及该领域最近的诊断进展。

相似文献

1
Myopathology of Adult and Paediatric Mitochondrial Diseases.
J Clin Med. 2017 Jul 4;6(7):64. doi: 10.3390/jcm6070064.
4
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
5
Diagnosis of mitochondrial myopathies.
Mol Genet Metab. 2013 Sep-Oct;110(1-2):35-41. doi: 10.1016/j.ymgme.2013.07.007. Epub 2013 Jul 17.
6
Significance of Mitochondria DNA Mutations in Diseases.
Adv Exp Med Biol. 2017;1038:219-230. doi: 10.1007/978-981-10-6674-0_15.
7
Recognition, investigation and management of mitochondrial disease.
Arch Dis Child. 2017 Nov;102(11):1082-1090. doi: 10.1136/archdischild-2016-311370. Epub 2017 Jun 24.
8
Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders.
Curr Issues Mol Biol. 2022 Feb 27;44(3):1127-1148. doi: 10.3390/cimb44030074.
9
Investigation of oxidative phosphorylation activity and complex composition in mitochondrial disease.
Handb Clin Neurol. 2023;194:127-139. doi: 10.1016/B978-0-12-821751-1.00008-7.
10
Diagnosis of primary mitochondrial disorders -Emphasis on myopathological aspects.
Mitochondrion. 2021 Nov;61:69-84. doi: 10.1016/j.mito.2021.09.007. Epub 2021 Sep 27.

引用本文的文献

1
Rhabdomyolysis in Children: A State-of-the-Art Review.
Children (Basel). 2025 Apr 10;12(4):492. doi: 10.3390/children12040492.
2
Type and Frequency of Misdiagnosis and Time Lag to Diagnosis in Patients with Chronic Progressive External Ophthalmoplegia.
J Ophthalmic Vis Res. 2024 Sep 16;19(3):334-339. doi: 10.18502/jovr.v19i3.13998. eCollection 2024 Jul-Sep.
3
The Emerging Role of Mitochondrial Dysfunction in the Pathogenesis of Idiopathic Inflammatory Myopathies.
Rambam Maimonides Med J. 2023 Apr 30;14(2):e0006. doi: 10.5041/RMMJ.10493.
4
Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity.
J Clin Invest. 2023 May 15;133(10):e162957. doi: 10.1172/JCI162957.
5
Pathological Features in Paediatric Patients with TK2 Deficiency.
Int J Mol Sci. 2022 Sep 20;23(19):11002. doi: 10.3390/ijms231911002.
6
Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders.
Curr Issues Mol Biol. 2022 Feb 27;44(3):1127-1148. doi: 10.3390/cimb44030074.
8
Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature.
Mol Genet Genomic Med. 2022 Jul;10(7):e1955. doi: 10.1002/mgg3.1955. Epub 2022 Apr 26.
9
"Empowering" Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter?
Int J Mol Sci. 2021 Feb 12;22(4):1824. doi: 10.3390/ijms22041824.
10
Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects.
Front Physiol. 2021 Jan 13;11:615038. doi: 10.3389/fphys.2020.615038. eCollection 2020.

本文引用的文献

2
Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia.
Hum Mutat. 2017 Aug;38(8):970-977. doi: 10.1002/humu.23262. Epub 2017 Jun 6.
3
Neuromuscular Manifestations in Mitochondrial Diseases in Children.
Semin Pediatr Neurol. 2016 Nov;23(4):290-305. doi: 10.1016/j.spen.2016.11.004. Epub 2016 Nov 9.
4
The genetics and pathology of mitochondrial disease.
J Pathol. 2017 Jan;241(2):236-250. doi: 10.1002/path.4809. Epub 2016 Nov 2.
5
Skeletal muscle imaging in neuromuscular disease.
J Clin Neurosci. 2016 Nov;33:1-10. doi: 10.1016/j.jocn.2016.01.041. Epub 2016 Sep 6.
6
7
Mitochondrial vasculopathy.
World J Cardiol. 2016 May 26;8(5):333-9. doi: 10.4330/wjc.v8.i5.333.
8
GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction.
PLoS One. 2016 Feb 11;11(2):e0148709. doi: 10.1371/journal.pone.0148709. eCollection 2016.
10
Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders.
Ann Neurol. 2015 Nov;78(5):814-23. doi: 10.1002/ana.24506. Epub 2015 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验