Phadke Rahul
Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London WC1N 3BG, UK.
Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
J Clin Med. 2017 Jul 4;6(7):64. doi: 10.3390/jcm6070064.
Mitochondria are dynamic organelles ubiquitously present in nucleated eukaryotic cells, subserving multiple metabolic functions, including cellular ATP generation by oxidative phosphorylation (OXPHOS). The OXPHOS machinery comprises five transmembrane respiratory chain enzyme complexes (RC). Defective OXPHOS gives rise to mitochondrial diseases (mtD). The incredible phenotypic and genetic diversity of mtD can be attributed at least in part to the RC dual genetic control (nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)) and the complex interaction between the two genomes. Despite the increasing use of next-generation-sequencing (NGS) and various omics platforms in unravelling novel mtD genes and pathomechanisms, current clinical practice for investigating mtD essentially involves a multipronged approach including clinical assessment, metabolic screening, imaging, pathological, biochemical and functional testing to guide molecular genetic analysis. This review addresses the broad muscle pathology landscape including genotype-phenotype correlations in adult and paediatric mtD, the role of immunodiagnostics in understanding some of the pathomechanisms underpinning the canonical features of mtD, and recent diagnostic advances in the field.
线粒体是普遍存在于有核真核细胞中的动态细胞器,发挥多种代谢功能,包括通过氧化磷酸化(OXPHOS)产生细胞ATP。OXPHOS机制由五个跨膜呼吸链酶复合物(RC)组成。OXPHOS缺陷会导致线粒体疾病(mtD)。mtD令人难以置信的表型和遗传多样性至少部分可归因于RC的双重遗传控制(核DNA(nDNA)和线粒体DNA(mtDNA))以及两个基因组之间的复杂相互作用。尽管在揭示新的mtD基因和发病机制方面越来越多地使用下一代测序(NGS)和各种组学平台,但目前研究mtD的临床实践基本上涉及多管齐下的方法,包括临床评估、代谢筛查、成像、病理、生化和功能测试,以指导分子遗传学分析。本综述探讨了广泛的肌肉病理学领域,包括成人和儿童mtD中的基因型-表型相关性、免疫诊断在理解一些支撑mtD典型特征的发病机制中的作用以及该领域最近的诊断进展。