Suppr超能文献

通过使用一种用于室内场景识别的新图像可视化方法构建强大的学习特征描述符。

Build a Robust Learning Feature Descriptor by Using a New Image Visualization Method for Indoor Scenario Recognition.

作者信息

Jiao Jichao, Wang Xin, Deng Zhongliang

机构信息

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Sensors (Basel). 2017 Jul 4;17(7):1569. doi: 10.3390/s17071569.

Abstract

In order to recognize indoor scenarios, we extract image features for detecting objects, however, computers can make some unexpected mistakes. After visualizing the histogram of oriented gradient (HOG) features, we find that the world through the eyes of a computer is indeed different from human eyes, which assists researchers to see the reasons that cause a computer to make errors. Additionally, according to the visualization, we notice that the HOG features can obtain rich texture information. However, a large amount of background interference is also introduced. In order to enhance the robustness of the HOG feature, we propose an improved method for suppressing the background interference. On the basis of the original HOG feature, we introduce a principal component analysis (PCA) to extract the principal components of the image colour information. Then, a new hybrid feature descriptor, which is named HOG-PCA (HOGP), is made by deeply fusing these two features. Finally, the HOGP is compared to the state-of-the-art HOG feature descriptor in four scenes under different illumination. In the simulation and experimental tests, the qualitative and quantitative assessments indicate that the visualizing images of the HOGP feature are close to the observation results obtained by human eyes, which is better than the original HOG feature for object detection. Furthermore, the runtime of our proposed algorithm is hardly increased in comparison to the classic HOG feature.

摘要

为了识别室内场景,我们提取图像特征以检测物体,然而,计算机可能会犯一些意想不到的错误。在可视化定向梯度直方图(HOG)特征后,我们发现计算机眼中的世界确实与人类的不同,这有助于研究人员了解导致计算机出错的原因。此外,根据可视化结果,我们注意到HOG特征可以获取丰富的纹理信息。然而,同时也引入了大量的背景干扰。为了提高HOG特征的鲁棒性,我们提出了一种改进方法来抑制背景干扰。在原始HOG特征的基础上,我们引入主成分分析(PCA)来提取图像颜色信息的主成分。然后,通过深度融合这两个特征,生成了一种新的混合特征描述符,称为HOG-PCA(HOGP)。最后,在不同光照条件下的四个场景中,将HOGP与当前最先进的HOG特征描述符进行比较。在模拟和实验测试中,定性和定量评估表明,HOGP特征的可视化图像接近人眼观察结果,在目标检测方面优于原始HOG特征。此外,与经典HOG特征相比,我们提出的算法运行时间几乎没有增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0e8/5539970/734679ba9eab/sensors-17-01569-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验