Suppr超能文献

基于 HOG 和 CNN 的组合算法提高实时多目标跨非重叠多摄像机跟踪检测质量率。

Enhancing Detection Quality Rate with a Combined HOG and CNN for Real-Time Multiple Object Tracking across Non-Overlapping Multiple Cameras.

机构信息

School of Communications and Information Engineering, Institute of Smart City, Shanghai University, Shanghai 200444, China.

School of Information Engineering, Huangshan University, Huangshan 245041, China.

出版信息

Sensors (Basel). 2022 Mar 9;22(6):2123. doi: 10.3390/s22062123.

Abstract

Multi-object tracking in video surveillance is subjected to illumination variation, blurring, motion, and similarity variations during the identification process in real-world practice. The previously proposed applications have difficulties in learning the appearances and differentiating the objects from sundry detections. They mostly rely heavily on local features and tend to lose vital global structured features such as contour features. This contributes to their inability to accurately detect, classify or distinguish the fooling images. In this paper, we propose a paradigm aimed at eliminating these tracking difficulties by enhancing the detection quality rate through the combination of a convolutional neural network (CNN) and a histogram of oriented gradient (HOG) descriptor. We trained the algorithm with an input of 120 × 32 images size and cleaned and converted them into binary for reducing the numbers of false positives. In testing, we eliminated the background on frames size and applied morphological operations and Laplacian of Gaussian model (LOG) mixture after blobs. The images further underwent feature extraction and computation with the HOG descriptor to simplify the structural information of the objects in the captured video images. We stored the appearance features in an array and passed them into the network (CNN) for further processing. We have applied and evaluated our algorithm for real-time multiple object tracking on various city streets using EPFL multi-camera pedestrian datasets. The experimental results illustrate that our proposed technique improves the detection rate and data associations. Our algorithm outperformed the online state-of-the-art approach by recording the highest in precisions and specificity rates.

摘要

在视频监控中的多目标跟踪在实际识别过程中会受到光照变化、模糊、运动和相似性变化的影响。以前提出的应用程序在学习外观和区分物体方面存在困难,它们主要依赖于局部特征,并且容易丢失轮廓特征等重要的全局结构特征。这导致它们无法准确检测、分类或区分欺骗图像。在本文中,我们提出了一种通过结合卷积神经网络(CNN)和方向梯度直方图(HOG)描述符来提高检测质量率的方法来消除这些跟踪困难。我们使用输入为 120×32 图像大小的算法进行训练,并对其进行清理和转换为二进制以减少误报数量。在测试中,我们在帧大小上消除背景,并在斑点之后应用形态学操作和拉普拉斯高斯模型(LOG)混合。然后,图像使用 HOG 描述符进行特征提取和计算,以简化捕获视频图像中物体的结构信息。我们将外观特征存储在数组中,并将其传递到网络(CNN)进行进一步处理。我们已经使用 EPFL 多摄像机行人数据集在各种城市街道上应用和评估了我们的实时多目标跟踪算法。实验结果表明,我们提出的技术提高了检测率和数据关联。我们的算法通过记录最高的精度和特异性率,优于在线最先进的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1144/8949134/e1e2b032196a/sensors-22-02123-g0A1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验