Del-Valle-Soto Carolina, Mex-Perera Carlos, Monroy Raul, Nolazco-Flores Juan A
Universidad Panamericana. Facultad de Ingeniería. Prolongación Calzada Circunvalación Poniente 49, Zapopan, Jalisco 45010, Mexico.
Telemática Telemetría y Radiofrecuencia, Francia 1717, Col. Moderna, Guadalajara 44190, Mexico.
Sensors (Basel). 2017 Jul 5;17(7):1573. doi: 10.3390/s17071573.
In this work, we present the design of a mitigation scheme for jamming attacks integrated to the routing protocols MPH, AODV, and DSR. The resulting protocols are named MPH-M (Multi-Parent Hierarchical - Modified), AODV-M (Ad hoc On Demand Distance Vector - Modified), and DSR-M (Dynamic Source Routing - Modified). For the mitigation algorithm, if the detection algorithm running locally in each node produces a positive result then the node is isolated; second, the routing protocol adapts their paths avoiding the isolated nodes. We evaluated how jamming attacks affect different metrics for all these modified protocols. The metrics we employ to detect jamming attack are number of packet retransmissions, number of CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) retries while waiting for an idle channel and the energy wasted by the node. The metrics to evaluate the performance of the modified routing protocols are the throughput and resilience of the system and the energy used by the nodes. We evaluated all the modified protocols when the attacker position was set near, middle and far of the collector node. The results of our evaluation show that performance for MPH-M is much better than AODV-M and DSR-M. For example, the node energy for MPH-M is 138.13% better than AODV-M and 126.07% better than DSR-M. Moreover, we also find that MPH-M benefits much more of the mitigation scheme than AODV-M and DSR-M. For example, the node energy consumption is 34.61% lower for MPH-M and only 3.92% and 3.42% for AODV-M and DSR-M, respectively. On throughput, the MPH protocol presents a packet reception efficiency at the collector node of 16.4% on to AODV and DSR when there is no mitigation mechanism. Moreover, MPH-M has an efficiency greater than 7.7% with respect to AODV-M and DSR-M when there is a mitigation scheme. In addition, we have that with the mitigation mechanism AODV-M and DSR-M do not present noticeable modification. However, MPH-M improves its efficiency by 8.4%. We also measure the resilience of these algorithms from the average packet re-transmissions perspective, and we find that MPH-M has around a 15% lower change rate than AODV-M and DSR-M. The MPH-M recovery time is 5 s faster than AODV-M and 2 s faster than DSR-M.
在这项工作中,我们展示了一种集成到路由协议MPH、AODV和DSR中的针对干扰攻击的缓解方案设计。由此产生的协议分别命名为MPH-M(多父层次结构 - 修改版)、AODV-M(自组织按需距离矢量 - 修改版)和DSR-M(动态源路由 - 修改版)。对于缓解算法,如果在每个节点本地运行的检测算法产生肯定结果,则该节点被隔离;其次,路由协议调整其路径以避开被隔离的节点。我们评估了干扰攻击如何影响所有这些修改后协议的不同指标。我们用于检测干扰攻击的指标是数据包重传次数、等待空闲信道时的CSMA/CA(带有冲突避免的载波侦听多路访问)重试次数以及节点浪费的能量。用于评估修改后路由协议性能的指标是系统的吞吐量和弹性以及节点使用的能量。当攻击者位置设置在收集器节点附近、中间和远处时,我们评估了所有修改后的协议。我们的评估结果表明,MPH-M的性能比AODV-M和DSR-M好得多。例如,MPH-M的节点能量比AODV-M好138.13%,比DSR-M好126.07%。此外,我们还发现MPH-M比AODV-M和DSR-M从缓解方案中受益更多。例如,MPH-M的节点能量消耗降低了34.61%,而AODV-M和DSR-M分别仅降低了3.92%和3.42%。在吞吐量方面,当没有缓解机制时,MPH协议在收集器节点的数据包接收效率相对于AODV和DSR为16.4%。此外,当存在缓解方案时,MPH-M相对于AODV-M和DSR-M的效率提高了7.7%以上。此外,我们发现有了缓解机制后,AODV-M和DSR-M没有明显变化。然而,MPH-M的效率提高了8.4%。我们还从平均数据包重传的角度测量了这些算法的弹性,发现MPH-M的变化率比AODV-M和DSR-M低约15%。MPH-M的恢复时间比AODV-M快5秒,比DSR-M快2秒。