Suppr超能文献

渗透溶质如何在分子尺度上对抗压力变性。

How Osmolytes Counteract Pressure Denaturation on a Molecular Scale.

作者信息

Shimizu Seishi, Smith Paul E

机构信息

York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.

Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas, 66506-0401, USA.

出版信息

Chemphyschem. 2017 Aug 18;18(16):2243-2249. doi: 10.1002/cphc.201700503. Epub 2017 Jul 5.

Abstract

Life in the deep sea exposes enzymes to high hydrostatic pressure, which decreases their stability. For survival, deep sea organisms tend to accumulate various osmolytes, most notably trimethylamine N-oxide used by fish, to counteract pressure denaturation. However, exactly how these osmolytes work remains unclear. Here, a rigorous statistical thermodynamics approach is used to clarify the mechanism of osmoprotection. It is shown that the weak, nonspecific, and dynamic interactions of water and osmolytes with proteins can be characterized only statistically, and that the competition between protein-osmolyte and protein-water interactions is crucial in determining conformational stability. Osmoprotection is driven by a stronger exclusion of osmolytes from the denatured protein than from the native conformation, and water distribution has no significant effect on these changes at low osmolyte concentrations.

摘要

深海中的生命使酶暴露于高静水压力之下,这会降低它们的稳定性。为了生存,深海生物倾向于积累各种渗透溶质,最显著的是鱼类使用的三甲胺 N-氧化物,以对抗压力变性。然而,这些渗透溶质的确切作用机制仍不清楚。在此,采用了一种严谨的统计热力学方法来阐明渗透保护的机制。结果表明,水和渗透溶质与蛋白质之间微弱、非特异性和动态的相互作用只能通过统计学来表征,并且蛋白质-渗透溶质相互作用与蛋白质-水相互作用之间的竞争对于确定构象稳定性至关重要。渗透保护是由变性蛋白质比天然构象更强烈地排斥渗透溶质所驱动的,并且在低渗透溶质浓度下,水的分布对这些变化没有显著影响。

相似文献

1
How Osmolytes Counteract Pressure Denaturation on a Molecular Scale.
Chemphyschem. 2017 Aug 18;18(16):2243-2249. doi: 10.1002/cphc.201700503. Epub 2017 Jul 5.
2
Modulation of protein-saccharide interactions by deep-sea osmolytes under high pressure stress.
Int J Biol Macromol. 2024 Jan;255:128119. doi: 10.1016/j.ijbiomac.2023.128119. Epub 2023 Nov 15.
3
Heterogeneous Impacts of Protein-Stabilizing Osmolytes on Hydrophobic Interaction.
J Phys Chem B. 2018 Jul 12;122(27):6922-6930. doi: 10.1021/acs.jpcb.8b04654. Epub 2018 Jun 28.
4
A molecular mechanism for osmolyte-induced protein stability.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13997-4002. doi: 10.1073/pnas.0606236103. Epub 2006 Sep 12.
5
Effect of Osmolytes on Water Mobility Correlates with Their Stabilizing Effect on Proteins.
J Phys Chem B. 2022 Apr 7;126(13):2466-2475. doi: 10.1021/acs.jpcb.1c10634. Epub 2022 Mar 29.
6
Deep sea osmolytes in action: their effect on protein-ligand binding under high pressure stress.
Phys Chem Chem Phys. 2022 Aug 3;24(30):17966-17978. doi: 10.1039/d2cp01769e.
7
Mixed osmolytes: the degree to which one osmolyte affects the protein stabilizing ability of another.
Protein Sci. 2007 Feb;16(2):293-8. doi: 10.1110/ps.062610407. Epub 2006 Dec 22.
9
The osmophobic effect: natural selection of a thermodynamic force in protein folding.
J Mol Biol. 2001 Jul 27;310(5):955-63. doi: 10.1006/jmbi.2001.4819.
10
Peptide conformational preferences in osmolyte solutions: transfer free energies of decaalanine.
J Am Chem Soc. 2011 Feb 16;133(6):1849-58. doi: 10.1021/ja1078128. Epub 2011 Jan 20.

引用本文的文献

1
Trimethylamine-N-oxide depletes urea in a peptide solvation shell.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317825121. doi: 10.1073/pnas.2317825121. Epub 2024 Mar 27.
2
In Silico and In Vitro Studies of Antibacterial Activity of Cow Urine Distillate (CUD).
Evid Based Complement Alternat Med. 2024 Jan 8;2024:1904763. doi: 10.1155/2024/1904763. eCollection 2024.
3
The ability of trimethylamine N-oxide to resist pressure induced perturbations to water structure.
Commun Chem. 2022 Sep 28;5(1):116. doi: 10.1038/s42004-022-00726-z.

本文引用的文献

1
Osmolyte depletion viewed in terms of the dividing membrane and its work of expansion against osmotic pressure.
Biophys Chem. 2017 Dec;231:111-115. doi: 10.1016/j.bpc.2017.02.003. Epub 2017 Feb 27.
2
To Polarize or Not to Polarize? Charge-on-Spring versus KBFF Models for Water and Methanol Bulk and Vapor-Liquid Interfacial Mixtures.
J Chem Theory Comput. 2016 May 10;12(5):2373-87. doi: 10.1021/acs.jctc.5b01115. Epub 2016 Apr 19.
3
Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar.
Phys Chem Chem Phys. 2015 Oct 7;17(37):24224-37. doi: 10.1039/c5cp03069b. Epub 2015 Sep 1.
5
Particle and Energy Pair and Triplet Correlations in Liquids and Liquid Mixtures from Experiment and Simulation.
J Phys Chem B. 2015 Jun 25;119(25):7761-77. doi: 10.1021/acs.jpcb.5b00741. Epub 2015 May 20.
6
The role of the concentration scale in the definition of transfer free energies.
Biophys Chem. 2015 Jan;196:68-76. doi: 10.1016/j.bpc.2014.09.005. Epub 2014 Oct 5.
7
Gelation: the role of sugars and polyols on gelatin and agarose.
J Phys Chem B. 2014 Nov 20;118(46):13210-6. doi: 10.1021/jp509099h. Epub 2014 Nov 6.
8
Hydrotropy: monomer-micelle equilibrium and minimum hydrotrope concentration.
J Phys Chem B. 2014 Sep 4;118(35):10515-24. doi: 10.1021/jp505869m. Epub 2014 Aug 21.
9
Preferential solvation: dividing surface vs excess numbers.
J Phys Chem B. 2014 Apr 10;118(14):3922-30. doi: 10.1021/jp410567c. Epub 2014 Apr 1.
10
Local Fluctuations in Solution: Theory and Applications.
Adv Chem Phys. 2013;153:311-372. doi: 10.1002/9781118571767.ch4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验