Suppr超能文献

受电埃尺度通道中反常水动力学启发的纳米流体传感。

Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels.

作者信息

Chu Tianshu, Zhou Ze, Tian Pengfei, Yu Tingting, Lian Cheng, Zhang Bowei, Xuan Fu-Zhen

机构信息

Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Shanghai, PR China.

School of Mechanical and Power Engineering and, East China University of Science and Technology, Shanghai, PR China.

出版信息

Nat Commun. 2024 Aug 26;15(1):7329. doi: 10.1038/s41467-024-51877-7.

Abstract

Manipulation of confined water dynamics by voltage keeps great importance for diverse applications. However, limitations on the membrane functions, voltage-control range, and unclear dynamics need to be addressed. Herein, we report an anomalous electrically controlled gating phenomenon on cation-intercalated multi-layer TiC membranes and reveal the confined water dynamics. The water permeation rate was improved rapidly following the application and rise of voltage and finally reached a maximum rate at 0.9 V. The permeation rate starts to decrease from 0.9 V. Below 0.9 V, the electric field affects the charge and polarity of water molecules and then leads to ordered and denser rearrangement in the two-dimensional (2D) channel to accelerate the permeation rate. Above 0.9 V, with the assistance of metal cations, the surge in current induced aggregation of water molecules into clusters, thereby limiting the water mobility. Based on these findings, a high-performance humidity sensor was developed by simultaneously optimizing the response and recovery speeds through electric manipulation. This work provides flexible strategies in intelligent membrane design and nanofluidic sensing.

摘要

通过电压操纵受限水动力学在各种应用中具有重要意义。然而,膜功能、电压控制范围的限制以及不明确的动力学问题仍有待解决。在此,我们报道了阳离子插层多层TiC膜上的一种异常电控门控现象,并揭示了受限水动力学。施加电压并升高后,水渗透率迅速提高,最终在0.9 V时达到最大速率。渗透率从0.9 V开始下降。在0.9 V以下,电场影响水分子的电荷和极性,进而导致二维(2D)通道中有序且更密集的重排,从而加速渗透率。在0.9 V以上,在金属阳离子的帮助下,电流激增导致水分子聚集成簇,从而限制了水的流动性。基于这些发现,通过电操纵同时优化响应和恢复速度,开发了一种高性能湿度传感器。这项工作为智能膜设计和纳米流体传感提供了灵活的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a3/11347597/948b52e8229b/41467_2024_51877_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验