Suppr超能文献

复杂网络中流行病传播引发的行为同步

Behavioral synchronization induced by epidemic spread in complex networks.

作者信息

Sun Mengfeng, Lou Yijun, Duan Jinqiao, Fu Xinchu

机构信息

Department of Mathematics, Shanghai University, Shanghai 200444, China.

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Chaos. 2017 Jun;27(6):063101. doi: 10.1063/1.4984217.

Abstract

During the spread of an epidemic, individuals in realistic networks may exhibit collective behaviors. In order to characterize this kind of phenomenon and explore the correlation between collective behaviors and epidemic spread, in this paper, we construct several mathematical models (including without delay, with a coupling delay, and with double delays) of epidemic synchronization by applying the adaptive feedback motivated by real observations. By using Lyapunov function methods, we obtain the conditions for local and global stability of these epidemic synchronization models. Then, we illustrate that quenched mean-field theory is more accurate than heterogeneous mean-field theory in the prediction of epidemic synchronization. Finally, some numerical simulations are performed to complement our theoretical results, which also reveal some unexpected phenomena, for example, the coupling delay and epidemic delay influence the speed of epidemic synchronization. This work makes further exploration on the relationship between epidemic dynamics and synchronization dynamics, in the hope of being helpful to the study of other dynamical phenomena in the process of epidemic spread.

摘要

在疫情传播过程中,现实网络中的个体可能会表现出集体行为。为了刻画这种现象并探索集体行为与疫情传播之间的相关性,本文通过应用基于实际观测的自适应反馈,构建了几种疫情同步的数学模型(包括无延迟、具有耦合延迟和具有双重延迟的模型)。利用李雅普诺夫函数方法,我们得到了这些疫情同步模型局部和全局稳定的条件。然后,我们表明在疫情同步预测中,淬火平均场理论比非均匀平均场理论更准确。最后,进行了一些数值模拟以补充我们的理论结果,这些结果还揭示了一些意想不到的现象,例如,耦合延迟和疫情延迟会影响疫情同步的速度。这项工作对疫情动力学与同步动力学之间的关系进行了进一步探索,希望有助于研究疫情传播过程中的其他动力学现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验