Suppr超能文献

细胞周期进入会引发酵母极化过程中Cdc42激活的两种模式之间的转换。

Cell cycle entry triggers a switch between two modes of Cdc42 activation during yeast polarization.

作者信息

Witte Kristen, Strickland Devin, Glotzer Michael

机构信息

Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States.

出版信息

Elife. 2017 Jul 6;6:e26722. doi: 10.7554/eLife.26722.

Abstract

Cell polarization underlies many cellular and organismal functions. The GTPase Cdc42 orchestrates polarization in many contexts. In budding yeast, polarization is associated with a focus of Cdc42•GTP which is thought to self sustain by recruiting a complex containing Cla4, a Cdc42-binding effector, Bem1, a scaffold, and Cdc24, a Cdc42 GEF. Using optogenetics, we probe yeast polarization and find that local recruitment of Cdc24 or Bem1 is sufficient to induce polarization by triggering self-sustaining Cdc42 activity. However, the response to these perturbations depends on the recruited molecule, the cell cycle stage, and existing polarization sites. Before cell cycle entry, recruitment of Cdc24, but not Bem1, induces a metastable pool of Cdc42 that is sustained by positive feedback. Upon Cdk1 activation, recruitment of either Cdc24 or Bem1 creates a stable site of polarization that induces budding and inhibits formation of competing sites. Local perturbations have therefore revealed unexpected features of polarity establishment.

摘要

细胞极化是许多细胞和机体功能的基础。GTP酶Cdc42在多种情况下协调极化过程。在芽殖酵母中,极化与Cdc42•GTP的一个焦点相关,该焦点被认为通过招募一个包含Cla4(一种Cdc42结合效应器)、Bem1(一种支架蛋白)和Cdc24(一种Cdc42鸟苷酸交换因子)的复合物来实现自我维持。利用光遗传学技术,我们对酵母极化进行了探究,发现局部招募Cdc24或Bem1足以通过触发自我维持的Cdc42活性来诱导极化。然而,对这些扰动的反应取决于所招募的分子、细胞周期阶段以及现有的极化位点。在细胞周期进入之前,招募Cdc24而非Bem1会诱导一个由正反馈维持的Cdc42亚稳态池。在Cdk1激活后,招募Cdc24或Bem1都会产生一个稳定的极化位点,该位点诱导出芽并抑制竞争位点的形成。因此,局部扰动揭示了极性建立的意外特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a191/5536948/9fb41774d8dd/elife-26722-fig1.jpg

相似文献

3
Scaffold-mediated gating of Cdc42 signalling flux.
Elife. 2017 Mar 17;6:e25257. doi: 10.7554/eLife.25257.
4
Independence of symmetry breaking on Bem1-mediated autocatalytic activation of Cdc42.
J Cell Biol. 2013 Sep 30;202(7):1091-106. doi: 10.1083/jcb.201304180. Epub 2013 Sep 23.
6
A time-resolved interaction analysis of Bem1 reconstructs the flow of Cdc42 during polar growth.
Life Sci Alliance. 2020 Jul 31;3(9). doi: 10.26508/lsa.202000813. Print 2020 Sep.
7
Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1.
Mol Biol Cell. 2019 Sep 15;30(20):2543-2557. doi: 10.1091/mbc.E19-02-0106. Epub 2019 Aug 14.
9
Polarity establishment requires localized activation of Cdc42.
J Cell Biol. 2015 Oct 12;211(1):19-26. doi: 10.1083/jcb.201506108.
10
Avidity-driven polarity establishment via multivalent lipid-GTPase module interactions.
EMBO J. 2019 Feb 1;38(3). doi: 10.15252/embj.201899652. Epub 2018 Dec 17.

引用本文的文献

1
Cdc42 mobility and membrane flows regulate fission yeast cell shape and survival.
Nat Commun. 2024 Sep 27;15(1):8363. doi: 10.1038/s41467-024-52655-1.
2
Multiscale Modeling of Bistability in the Yeast Polarity Circuit.
Cells. 2024 Aug 15;13(16):1358. doi: 10.3390/cells13161358.
3
Patterning of the cell cortex by Rho GTPases.
Nat Rev Mol Cell Biol. 2024 Apr;25(4):290-308. doi: 10.1038/s41580-023-00682-z. Epub 2024 Jan 3.
4
Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast.
Nat Commun. 2023 Oct 16;14(1):6504. doi: 10.1038/s41467-023-42100-0.
6
A tractable physical model for the yeast polarity predicts epistasis and fitness.
Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220044. doi: 10.1098/rstb.2022.0044. Epub 2023 Apr 3.
7
Expanding the molecular versatility of an optogenetic switch in yeast.
Front Bioeng Biotechnol. 2022 Nov 15;10:1029217. doi: 10.3389/fbioe.2022.1029217. eCollection 2022.
8
Spatial models of pattern formation during phagocytosis.
PLoS Comput Biol. 2022 Oct 3;18(10):e1010092. doi: 10.1371/journal.pcbi.1010092. eCollection 2022 Oct.
9
Orientation of Cell Polarity by Chemical Gradients.
Annu Rev Biophys. 2022 May 9;51:431-451. doi: 10.1146/annurev-biophys-110821-071250. Epub 2022 Feb 7.
10
A novel stochastic simulation approach enables exploration of mechanisms for regulating polarity site movement.
PLoS Comput Biol. 2021 Jul 15;17(7):e1008525. doi: 10.1371/journal.pcbi.1008525. eCollection 2021 Jul.

本文引用的文献

1
Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity.
Mol Biol Cell. 2017 Feb 1;28(3):370-380. doi: 10.1091/mbc.E16-10-0739.
2
Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage.
J Cell Biol. 2016 Jun 20;213(6):641-9. doi: 10.1083/jcb.201603025. Epub 2016 Jun 13.
3
Role of competition between polarity sites in establishing a unique front.
Elife. 2015 Nov 2;4:e11611. doi: 10.7554/eLife.11611.
4
Polarity establishment requires localized activation of Cdc42.
J Cell Biol. 2015 Oct 12;211(1):19-26. doi: 10.1083/jcb.201506108.
5
Illuminating cell signalling with optogenetic tools.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):551-8. doi: 10.1038/nrm3837. Epub 2014 Jul 16.
6
Bud3 activates Cdc42 to establish a proper growth site in budding yeast.
J Cell Biol. 2014 Jul 7;206(1):19-28. doi: 10.1083/jcb.201402040.
7
Inhibition of Cdc42 during mitotic exit is required for cytokinesis.
J Cell Biol. 2013 Jul 22;202(2):231-40. doi: 10.1083/jcb.201301090.
9
Robust polarity establishment occurs via an endocytosis-based cortical corralling mechanism.
J Cell Biol. 2013 Feb 18;200(4):407-18. doi: 10.1083/jcb.201206081. Epub 2013 Feb 11.
10
Cell polarity: models and mechanisms from yeast, worms and flies.
Development. 2013 Jan 1;140(1):13-21. doi: 10.1242/dev.083634.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验