Suppr超能文献

基于不变关键点的容积图像配准。

Volumetric Image Registration From Invariant Keypoints.

出版信息

IEEE Trans Image Process. 2017 Oct;26(10):4900-4910. doi: 10.1109/TIP.2017.2722689. Epub 2017 Jul 3.

Abstract

We present a method for image registration based on 3D scale- and rotation-invariant keypoints. The method extends the scale invariant feature transform (SIFT) to arbitrary dimensions by making key modifications to orientation assignment and gradient histograms. Rotation invariance is proven mathematically. Additional modifications are made to extrema detection and keypoint matching based on the demands of image registration. Our experiments suggest that the choice of neighborhood in discrete extrema detection has a strong impact on image registration accuracy. In head MR images, the brain is registered to a labeled atlas with an average Dice coefficient of 92%, outperforming registration from mutual information as well as an existing 3D SIFT implementation. In abdominal CT images, the spine is registered with an average error of 4.82 mm. Furthermore, keypoints are matched with high precision in simulated head MR images exhibiting lesions from multiple sclerosis. These results were achieved using only affine transforms, and with no change in parameters across a wide variety of medical images. This paper is freely available as a cross-platform software library.

摘要

我们提出了一种基于 3D 尺度和旋转不变关键点的图像配准方法。该方法通过对方向分配和梯度直方图进行关键修改,将尺度不变特征变换(SIFT)扩展到任意维度。旋转不变性通过数学证明。根据图像配准的要求,对极值检测和关键点匹配进行了额外的修改。我们的实验表明,离散极值检测中邻域的选择对图像配准精度有很大的影响。在头部磁共振图像中,大脑以平均骰子系数 92%的精度注册到一个带标签的图谱,优于互信息注册以及现有的 3D SIFT 实现。在腹部 CT 图像中,脊柱的平均误差为 4.82 毫米。此外,在模拟的头部磁共振图像中,即使存在多发性硬化症引起的病变,关键点也能高精度匹配。这些结果仅使用仿射变换获得,并且在各种医学图像中无需更改参数。本文作为一个跨平台的软件库免费提供。

相似文献

1
Volumetric Image Registration From Invariant Keypoints.基于不变关键点的容积图像配准。
IEEE Trans Image Process. 2017 Oct;26(10):4900-4910. doi: 10.1109/TIP.2017.2722689. Epub 2017 Jul 3.
2
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.高光谱图像的谱-空尺度不变特征变换。
IEEE Trans Image Process. 2018 Feb;27(2):837-850. doi: 10.1109/TIP.2017.2749145. Epub 2017 Sep 4.
4
Scale- and affine-invariant fan feature.标度和平移不变扇形特征。
IEEE Trans Image Process. 2011 Jun;20(6):1627-40. doi: 10.1109/TIP.2010.2103948. Epub 2011 Jan 10.
10
Image registration method for multimodal images.多模态图像的图像配准方法。
Appl Opt. 2011 May 1;50(13):1861-7. doi: 10.1364/AO.50.001861.

引用本文的文献

本文引用的文献

1
Multiple Kernel Point Set Registration.多核点集配准。
IEEE Trans Med Imaging. 2016 Jun;35(6):1381-94. doi: 10.1109/TMI.2015.2511063. Epub 2015 Dec 22.
4
n-SIFT: n-dimensional scale invariant feature transform.n-SIFT:n维尺度不变特征变换。
IEEE Trans Image Process. 2009 Sep;18(9):2012-21. doi: 10.1109/TIP.2009.2024578. Epub 2009 Jun 5.
5
Volumetric ultrasound panorama based on 3D SIFT.基于三维尺度不变特征变换的容积超声全景图
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):52-60. doi: 10.1007/978-3-540-85990-1_7.
6
Mutual-information-based registration of medical images: a survey.基于互信息的医学图像配准:综述
IEEE Trans Med Imaging. 2003 Aug;22(8):986-1004. doi: 10.1109/TMI.2003.815867.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验