Suppr超能文献

相似文献

1
Cell-cycle dynamics of chromosomal organization at single-cell resolution.
Nature. 2017 Jul 5;547(7661):61-67. doi: 10.1038/nature23001.
2
Chromosome organization by one-sided and two-sided loop extrusion.
Elife. 2020 Apr 6;9:e53558. doi: 10.7554/eLife.53558.
3
Quantifying conformational heterogeneity of 3D genome organization in fruit fly.
PLoS One. 2025 Jul 3;20(7):e0326927. doi: 10.1371/journal.pone.0326927. eCollection 2025.
4
Quantifying Conformational Heterogeneity of 3D Genome Organization in Fruit Fly.
bioRxiv. 2025 May 27:2025.05.24.655945. doi: 10.1101/2025.05.24.655945.
7
3D structures of individual mammalian genomes studied by single-cell Hi-C.
Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13.
9
Extrinsic heterogeneity: Collectivity in isotropic conformational fluctuations of chromosomes.
Biophys J. 2025 Jul 1;124(13):2195-2208. doi: 10.1016/j.bpj.2025.05.020. Epub 2025 May 21.
10
From 2D to 4D: a Containerized Workflow and Browser to Explore Dynamic Chromatin Architecture.
bioRxiv. 2025 Jul 18:2025.07.13.664622. doi: 10.1101/2025.07.13.664622.

引用本文的文献

1
The emerging sequence grammar of 3D genome organisation.
Hum Genet. 2025 Aug 25. doi: 10.1007/s00439-025-02772-8.
3
Image-based 3D genomics through chromatin tracing.
Nat Rev Methods Primers. 2024;4. doi: 10.1038/s43586-024-00354-y. Epub 2024 Oct 24.
7
HiC4D-SPOT: a spatiotemporal outlier detection tool for Hi-C data.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf341.
8
Can Random Walking on a Hi-C Contact Matrix Lead to Data Quality Improvement? An Assessment.
bioRxiv. 2025 Jun 17:2025.06.11.659235. doi: 10.1101/2025.06.11.659235.
9
Non-disruptive 3D profiling of combinations of epigenetic marks in single cells.
bioRxiv. 2025 Jun 17:2025.06.13.659535. doi: 10.1101/2025.06.13.659535.

本文引用的文献

1
Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition.
Nature. 2017 Apr 6;544(7648):110-114. doi: 10.1038/nature21711. Epub 2017 Mar 29.
2
3D structures of individual mammalian genomes studied by single-cell Hi-C.
Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13.
3
Massively multiplex single-cell Hi-C.
Nat Methods. 2017 Mar;14(3):263-266. doi: 10.1038/nmeth.4155. Epub 2017 Jan 30.
4
Capturing pairwise and multi-way chromosomal conformations using chromosomal walks.
Nature. 2016 Dec 8;540(7632):296-300. doi: 10.1038/nature20158. Epub 2016 Nov 30.
5
HiCUP: pipeline for mapping and processing Hi-C data.
F1000Res. 2015 Nov 20;4:1310. doi: 10.12688/f1000research.7334.1. eCollection 2015.
6
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Nature. 2016 Jan 21;529(7586):418-22. doi: 10.1038/nature16496. Epub 2016 Jan 13.
7
Insulator dysfunction and oncogene activation in IDH mutant gliomas.
Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.
8
CTCF Binding Polarity Determines Chromatin Looping.
Mol Cell. 2015 Nov 19;60(4):676-84. doi: 10.1016/j.molcel.2015.09.023. Epub 2015 Oct 29.
9
Comparison of Hi-C results using in-solution versus in-nucleus ligation.
Genome Biol. 2015 Aug 26;16(1):175. doi: 10.1186/s13059-015-0753-7.
10
Establishment and Use of Mouse Haploid ES Cells.
Curr Protoc Mouse Biol. 2015 Jun 1;5(2):155-185. doi: 10.1002/9780470942390.mo140214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验