Rogers David H, Roth Cullen, Tauxe Cameron, Lee Jeannie T, Steadman Christina R, Sanbonmatsu Karissa Y, Lappala Anna, Starkenburg Shawn R
Information Sciences, Los Alamos National Laboratory, Los Alamos, NM, US.
Genomics & Bioanalytics Group, Los Alamos National Laboratory, Los Alamos, NM, US.
bioRxiv. 2025 Jul 18:2025.07.13.664622. doi: 10.1101/2025.07.13.664622.
Characterizing the physical organization of the genome is essential for understanding long-range gene regulation, chromatin compartmentalization, and epigenetic accessibility. Hi-C experiments generate two-dimensional (2D) genome-wide contact maps of chromatin interactions by capturing the spatial proximity between genomic loci, which reveal interaction frequencies but lack the spatial resolution needed to interpret the three-dimensional (3D) genome structure(s). Emerging evidence suggests that epigenetic regulation is closely linked to 3D genome architecture, and that structural changes over time (4D) drive key biological processes in development, disease, and environmental response. Thus, integrating 3D structure with functional data is critical for a more complete understanding of genome regulation. Previous work, most notably the 4DHiC chromosome modeling framework, has shown that physical multi-dimensional modeling approaches rooted in polymer physics and molecular dynamics can resolve these structures at biologically meaningful resolutions by integrating temporal Hi-C data with physical constraints to uncover dynamic chromosome reorganization. Thus, molecular dynamics simulations, constrained by Hi-C contact matrices, can resolve fine-scale structural changes and reveal functionally significant transitions in chromatin conformation.
Herein, we present the 4D Genome Browser Workflow (4DGBWorkflow) and the 4D Genome Browser (4DGB). The algorithm is based on the 4DHiC method and the containerized tool is an end-to-end workflow that can transform, filter, and view 4D epigenomics and chromatin datasets, allowing non-specialists to apply three-dimensional modeling principles to diverse datasets and experimental conditions. The software executes on a laptop running macOS, Linux or Windows. From input Hi-C files (.hic), the 4DGBWorkflow produces 3D reconstructions of chromosomes, integrates the reconstruction with track data (e.g., epigenetic marks, transcriptome profiles), and provides comparative visualization of the results in a single workflow.
The 4DGBWorkflow and 4D Genome Browser are open-source tools for comparative analysis and visualization of 4D chromosome datasets, including chromatin architecture and epigenomic signals. Automatic integration of Hi-C data with molecular dynamics democratizes the construction of time resolved 3D genome structures, simplifying complex simulations and data integration schemes.
表征基因组的物理组织对于理解长程基因调控、染色质区室化和表观遗传可及性至关重要。Hi-C实验通过捕获基因组位点之间的空间邻近性生成染色质相互作用的二维(2D)全基因组接触图谱,这些图谱揭示了相互作用频率,但缺乏解释三维(3D)基因组结构所需的空间分辨率。新出现的证据表明,表观遗传调控与3D基因组结构密切相关,并且随时间的结构变化(4D)驱动发育、疾病和环境反应中的关键生物学过程。因此,将3D结构与功能数据整合对于更全面地理解基因组调控至关重要。先前的工作,最著名的是4DHiC染色体建模框架,表明基于聚合物物理和分子动力学的物理多维建模方法可以通过将时间Hi-C数据与物理约束相结合来揭示动态染色体重组,从而以生物学上有意义的分辨率解析这些结构。因此,受Hi-C接触矩阵约束的分子动力学模拟可以解析精细尺度的结构变化,并揭示染色质构象中功能上重要的转变。
在此,我们展示了4D基因组浏览器工作流程(4DGBWorkflow)和4D基因组浏览器(4DGB)。该算法基于4DHiC方法,而容器化工具是一个端到端的工作流程,可对4D表观基因组学和染色质数据集进行转换、过滤和查看,使非专业人员能够将三维建模原理应用于各种数据集和实验条件。该软件可在运行macOS、Linux或Windows的笔记本电脑上执行。从输入的Hi-C文件(.hic)开始,4DGBWorkflow生成染色体的3D重建,将重建结果与轨迹数据(例如表观遗传标记、转录组图谱)整合,并在单个工作流程中提供结果的比较可视化。
4DGBWorkflow和4D基因组浏览器是用于对4D染色体数据集(包括染色质结构和表观基因组信号)进行比较分析和可视化的开源工具。Hi-C数据与分子动力学的自动整合使时间分辨3D基因组结构的构建民主化,简化了复杂的模拟和数据整合方案。