Suppr超能文献

果蝇飞行肌中线粒体复合物I生物合成的调控

Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles.

作者信息

Garcia Christian Joel, Khajeh Jahan, Coulanges Emmanuel, Chen Emily I-Ju, Owusu-Ansah Edward

机构信息

Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA.

Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center and Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA.

出版信息

Cell Rep. 2017 Jul 5;20(1):264-278. doi: 10.1016/j.celrep.2017.06.015.

Abstract

The flight muscles of Drosophila are highly enriched with mitochondria, but the mechanism by which mitochondrial complex I (CI) is assembled in this tissue has not been described. We report the mechanism of CI biogenesis in Drosophila flight muscles and show that it proceeds via the formation of ∼315, ∼550, and ∼815 kDa CI assembly intermediates. Additionally, we define specific roles for several CI subunits in the assembly process. In particular, we show that dNDUFS5 is required for converting an ∼700 kDa transient CI assembly intermediate into the ∼815 kDa assembly intermediate. Importantly, incorporation of dNDUFS5 into CI is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. Our findings highlight the potential of studies of CI biogenesis in Drosophila to uncover the mechanism of CI assembly in vivo and establish Drosophila as a suitable model organism and resource for addressing questions relevant to CI biogenesis in humans.

摘要

果蝇的飞行肌肉富含线粒体,但线粒体复合物I(CI)在该组织中的组装机制尚未见报道。我们报告了果蝇飞行肌肉中CI生物发生的机制,并表明它通过形成约315、约550和约815 kDa的CI组装中间体进行。此外,我们定义了几个CI亚基在组装过程中的特定作用。特别是,我们表明dNDUFS5是将约700 kDa的瞬时CI组装中间体转化为约815 kDa组装中间体所必需的。重要的是,将dNDUFS5掺入CI对于稳定或促进dNDUFA10掺入复合物是必要的。我们的研究结果突出了果蝇中CI生物发生研究在揭示体内CI组装机制方面的潜力,并将果蝇确立为解决与人类CI生物发生相关问题的合适模式生物和资源。

相似文献

1
Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles.
Cell Rep. 2017 Jul 5;20(1):264-278. doi: 10.1016/j.celrep.2017.06.015.
2
Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I.
Hum Mol Genet. 2015 May 15;24(10):2952-65. doi: 10.1093/hmg/ddv058. Epub 2015 Feb 12.
3
Insights from Drosophila on mitochondrial complex I.
Cell Mol Life Sci. 2020 Feb;77(4):607-618. doi: 10.1007/s00018-019-03293-0. Epub 2019 Sep 4.
4
Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):526-33. doi: 10.1016/j.bbabio.2015.02.006. Epub 2015 Feb 14.
5
Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly.
Redox Biol. 2017 Oct;13:477-481. doi: 10.1016/j.redox.2017.07.009. Epub 2017 Jul 11.
6
Understanding mitochondrial complex I assembly in health and disease.
Biochim Biophys Acta. 2012 Jun;1817(6):851-62. doi: 10.1016/j.bbabio.2011.08.010. Epub 2011 Sep 2.
8
Analysis of mitochondrial structure and function in the Drosophila larval musculature.
Mitochondrion. 2016 Jan;26:33-42. doi: 10.1016/j.mito.2015.11.005. Epub 2015 Dec 1.
9
Biphasic response of skeletal muscle mitochondria to chronic cardiac pressure overload - role of respiratory chain complex activity.
J Mol Cell Cardiol. 2012 Jan;52(1):125-35. doi: 10.1016/j.yjmcc.2011.10.022. Epub 2011 Nov 6.
10
Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly.
Biochim Biophys Acta. 2015 Jul;1852(7):1531-9. doi: 10.1016/j.bbadis.2015.04.008. Epub 2015 Apr 15.

引用本文的文献

2
Developmental mitochondrial complex I activity determines lifespan.
EMBO Rep. 2025 Apr;26(8):1957-1983. doi: 10.1038/s44319-025-00416-6. Epub 2025 Mar 17.
4
5
6
Using cryo-EM to understand the assembly pathway of respiratory complex I.
Acta Crystallogr D Struct Biol. 2024 Mar 1;80(Pt 3):159-173. doi: 10.1107/S205979832400086X. Epub 2024 Feb 19.
7
A Drosophila model of mitochondrial disease phenotypic heterogeneity.
Biol Open. 2024 Feb 15;13(2). doi: 10.1242/bio.060278. Epub 2024 Feb 28.
9
Phospholipids can regulate complex I assembly independent of their role in maintaining mitochondrial membrane integrity.
Cell Rep. 2023 Aug 29;42(8):112846. doi: 10.1016/j.celrep.2023.112846. Epub 2023 Jul 29.
10
Yeast NDI1 reconfigures neuronal metabolism and prevents the unfolded protein response in mitochondrial complex I deficiency.
PLoS Genet. 2023 Jul 3;19(7):e1010793. doi: 10.1371/journal.pgen.1010793. eCollection 2023 Jul.

本文引用的文献

1
The Assembly Pathway of Mitochondrial Respiratory Chain Complex I.
Cell Metab. 2017 Jan 10;25(1):128-139. doi: 10.1016/j.cmet.2016.09.002. Epub 2016 Oct 6.
2
Accessory subunits are integral for assembly and function of human mitochondrial complex I.
Nature. 2016 Oct 6;538(7623):123-126. doi: 10.1038/nature19754. Epub 2016 Sep 14.
3
Atomic structure of the entire mammalian mitochondrial complex I.
Nature. 2016 Oct 20;538(7625):406-410. doi: 10.1038/nature19794. Epub 2016 Sep 5.
4
Structure of mammalian respiratory complex I.
Nature. 2016 Aug 18;536(7616):354-358. doi: 10.1038/nature19095. Epub 2016 Aug 10.
5
Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.
6
Architecture of mammalian respiratory complex I.
Nature. 2014 Nov 6;515(7525):80-84. doi: 10.1038/nature13686. Epub 2014 Sep 7.
7
An update on complex I assembly: the assembly of players.
J Bioenerg Biomembr. 2014 Aug;46(4):323-8. doi: 10.1007/s10863-014-9564-x. Epub 2014 Jul 17.
8
Mitochondrial proteostasis in the control of aging and longevity.
Cell Metab. 2014 Aug 5;20(2):214-25. doi: 10.1016/j.cmet.2014.05.006. Epub 2014 Jun 12.
10
Muscle mitohormesis promotes longevity via systemic repression of insulin signaling.
Cell. 2013 Oct 24;155(3):699-712. doi: 10.1016/j.cell.2013.09.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验