文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms.

作者信息

Mallik Bhagaban, Frank C Andrew

机构信息

Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.

出版信息

bioRxiv. 2024 Dec 31:2024.12.30.630694. doi: 10.1101/2024.12.30.630694.


DOI:10.1101/2024.12.30.630694
PMID:39803545
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11722341/
Abstract

Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth. Here we report tissue-specific adaptations at the NMJ when MCI is depleted. In motor neurons, MCI depletion causes profound cytological defects and increased mitochondrial reactive oxygen species (ROS). But instead of diminishing synapse function, neuronal ROS triggers a homeostatic signaling process that maintains normal NMJ excitation. We identify molecules mediating this compensatory response. MCI depletion in muscles also enhances local ROS. But high levels of muscle ROS cause destructive responses: synapse degeneration, mitochondrial fragmentation, and impaired neurotransmission. In humans, mutations affecting MCI subunits cause severe neurological and neuromuscular diseases. The tissue-level effects that we describe in the system are potentially relevant to forms of mitochondrial pathogenesis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/8ae40dda7308/nihpp-2024.12.30.630694v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/c3d79bea31d2/nihpp-2024.12.30.630694v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/0020c373b129/nihpp-2024.12.30.630694v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/c3397cfffb3d/nihpp-2024.12.30.630694v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/a150a68b8f03/nihpp-2024.12.30.630694v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/d206eb0d723c/nihpp-2024.12.30.630694v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/2ba0bed58b26/nihpp-2024.12.30.630694v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/e188be9da8d5/nihpp-2024.12.30.630694v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/0afe159ac4c5/nihpp-2024.12.30.630694v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/8ae40dda7308/nihpp-2024.12.30.630694v1-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/c3d79bea31d2/nihpp-2024.12.30.630694v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/0020c373b129/nihpp-2024.12.30.630694v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/c3397cfffb3d/nihpp-2024.12.30.630694v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/a150a68b8f03/nihpp-2024.12.30.630694v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/d206eb0d723c/nihpp-2024.12.30.630694v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/2ba0bed58b26/nihpp-2024.12.30.630694v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/e188be9da8d5/nihpp-2024.12.30.630694v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/0afe159ac4c5/nihpp-2024.12.30.630694v1-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b07e/11722341/8ae40dda7308/nihpp-2024.12.30.630694v1-f0009.jpg

相似文献

[1]
Mitochondrial Complex I and ROS control synapse function through opposing pre- and postsynaptic mechanisms.

bioRxiv. 2024-12-31

[2]
Roles for Mitochondrial Complex I Subunits in Regulating Synaptic Transmission and Growth.

Front Neurosci. 2022-4-26

[3]
C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction.

PLoS Genet. 2016-2-22

[4]
Structural and Functional Synaptic Plasticity Induced by Convergent Synapse Loss in the Neuromuscular Circuit.

J Neurosci. 2021-2-17

[5]
Homeostatic plasticity at the Drosophila neuromuscular junction.

Neuropharmacology. 2014-3

[6]
Transgenic expression of SOD1 specifically in neurons of Sod1 deficient mice prevents defects in muscle mitochondrial function and calcium handling.

Free Radic Biol Med. 2021-3

[7]
Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.

Redox Biol. 2018-3-20

[8]
Novel Drosophila model for mitochondrial diseases by targeting of a solute carrier protein SLC25A46.

Brain Res. 2018-6-15

[9]
Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction.

PLoS One. 2013-10-4

[10]
Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des. 2014

本文引用的文献

[1]
Endogenous tagging of Unc-13 reveals nanoscale reorganization at active zones during presynaptic homeostatic potentiation.

Front Cell Neurosci. 2022-12-14

[2]
The ER protein Creld regulates ER-mitochondria contact dynamics and respiratory complex 1 activity.

Sci Adv. 2022-7-22

[3]
Roles for Mitochondrial Complex I Subunits in Regulating Synaptic Transmission and Growth.

Front Neurosci. 2022-4-26

[4]
Synapses: The Brain's Energy-Demanding Sites.

Int J Mol Sci. 2022-3-26

[5]
Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies.

Elife. 2022-2-22

[6]
Reactive Oxygen Species Mediate Activity-Regulated Dendritic Plasticity Through NADPH Oxidase and Aquaporin Regulation.

Front Cell Neurosci. 2021-7-5

[7]
Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition.

PLoS Biol. 2021-5

[8]
Mitochondrial calcium at the synapse.

Mitochondrion. 2021-7

[9]
Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes.

PLoS Genet. 2020-10-21

[10]
Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in .

Proc Natl Acad Sci U S A. 2020-9-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索