Mallik Bhagaban, Frank C Andrew
Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
bioRxiv. 2024 Dec 31:2024.12.30.630694. doi: 10.1101/2024.12.30.630694.
Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth. Here we report tissue-specific adaptations at the NMJ when MCI is depleted. In motor neurons, MCI depletion causes profound cytological defects and increased mitochondrial reactive oxygen species (ROS). But instead of diminishing synapse function, neuronal ROS triggers a homeostatic signaling process that maintains normal NMJ excitation. We identify molecules mediating this compensatory response. MCI depletion in muscles also enhances local ROS. But high levels of muscle ROS cause destructive responses: synapse degeneration, mitochondrial fragmentation, and impaired neurotransmission. In humans, mutations affecting MCI subunits cause severe neurological and neuromuscular diseases. The tissue-level effects that we describe in the system are potentially relevant to forms of mitochondrial pathogenesis.
神经元需要大量能量,而线粒体有助于满足这一需求。功能失调的线粒体在各种神经元任务中引发问题。我们之前以神经肌肉接头(NMJ)作为模型突触进行研究,发现线粒体复合物I(MCI)亚基是维持NMJ功能和生长所必需的。在此我们报告当MCI缺失时,NMJ处的组织特异性适应性变化。在运动神经元中,MCI缺失会导致严重的细胞学缺陷并增加线粒体活性氧(ROS)。但神经元ROS并未削弱突触功能,反而触发了一种稳态信号传导过程,维持正常的NMJ兴奋性。我们鉴定出介导这种代偿反应的分子。肌肉中MCI缺失也会增强局部ROS。但高水平的肌肉ROS会引发破坏性反应:突触退化、线粒体碎片化和神经传递受损。在人类中,影响MCI亚基的突变会导致严重的神经和神经肌肉疾病。我们在该系统中描述的组织水平效应可能与线粒体发病机制的形式相关。