Ibañez Carla, Poeschl Yvonne, Peterson Tom, Bellstädt Julia, Denk Kathrin, Gogol-Döring Andreas, Quint Marcel, Delker Carolin
Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120, Halle (Saale), Germany.
Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
BMC Plant Biol. 2017 Jul 6;17(1):114. doi: 10.1186/s12870-017-1068-5.
Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.
Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.
Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
全球环境温度升高对野生和栽培植物物种构成重大挑战。对单个温度响应性状的正向遗传学分析已鉴定出多个信号传导和响应成分。然而,关于不同发育阶段的温度敏感性以及自然变异的贡献的全面知识仍然匮乏,充其量也只是零散的。
在这里,我们系统地分析了在16至28°C的四个不同温度下长日照条件下生长的十个自然拟南芥生态型在整个完整生命周期中的热形态发生。我们使用Q、G×E、表型差异和相关性分析来评估代表五个表型类别的30多个形态计量和发育性状的温度敏感性和基因型效应。我们发现基因型和温度以不同强度差异影响植物生长和发育。此外,表型温度响应之间的总体相关性相对较低,这似乎是由各个生态型不同的温度适应能力造成的。
基因型特异性温度响应可能是未来正向遗传学方法的有吸引力的目标,特定生态型的热形态发生图谱可能有助于评估已知和新的调控成分的功能相关性。