Suppr超能文献

AlgC和GalU在……的固有抗生素抗性中的作用 。(原文句子不完整)

Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of .

作者信息

Feng Shunhang, Lin Jiansheng, Zhang Xiaoyan, Hong Xin, Xu Wanyin, Wen Yancheng, She Feifei

机构信息

Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People's Republic of China.

Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People's Republic of China.

出版信息

Infect Drug Resist. 2023 Mar 29;16:1839-1847. doi: 10.2147/IDR.S403046. eCollection 2023.

Abstract

PURPOSE

is associated with the development of gastrointestinal diseases. However, its eradication is challenged by an increased rate of drug resistance. AlgC and GalU are important for the synthesis of UDP-glucose, which is a substrate for the synthesis of lipopolysaccharide (LPS) in . In this study, we investigated the role of UDP-glucose in the intrinsic drug resistance in .

METHODS

Gene knockout strains or complementation strains, including Δ, Δ, Δ, Δ, Δ/* and Δ/* were constructed in ; and Δ and Δ were also constructed in two clinical drug-resistant strains, and . The minimum inhibitory concentrations (MIC) of to amoxicillin (AMO), tetracycline (TET), clarithromycin (CLA), metronidazole (MNZ), levofloxacin (LEV), and rifampicin (RIF) were measured using MIC Test Strips. Silver staining was performed to examine the role of AlgC and GalU in LPS synthesis. Ethidium bromide (EB) accumulation assay was performed to assess the outer membrane permeability of strains.

RESULTS

Knockout of and in resulted in increased drug sensitivity to AMO, MNZ, CLA, LEV, and RIF; whereas knockout of and , which are involved in GDP-fucose and UDP-galactose synthesis, respectively, did not significantly alter the drug sensitivity of . Knockout of and in clinically drug-resistant strains resulted in significantly increased drug sensitivity to all the antibiotics, except MNZ. The lipid A-core structure was altered in Δ and Δ when their EB accumulation was higher than that in the wild type and complementation strains.

CONCLUSION

UDP-glucose may play an important role in increasing drug resistance to AMO, MNZ, CLA, LEV, TET, and RIF by maintaining the lipid A-core structure and decreasing membrane permeability. AlgC and GalU may serve as potential drug targets for decreasing antibiotic resistance in clinical isolates.

摘要

目的

与胃肠道疾病的发生有关。然而,其根除受到耐药率上升的挑战。AlgC和GalU对于UDP-葡萄糖的合成很重要,UDP-葡萄糖是[具体生物]中脂多糖(LPS)合成的底物。在本研究中,我们研究了UDP-葡萄糖在[具体生物]固有耐药性中的作用。

方法

在[具体生物]中构建了基因敲除菌株或互补菌株,包括Δ[相关基因1]、Δ[相关基因2]、Δ[相关基因3]、Δ[相关基因4]、Δ[相关基因1]/和Δ[相关基因2]/;并在两种临床耐药菌株[菌株名称1]和[菌株名称2]中也构建了Δ[相关基因1]和Δ[相关基因2]。使用MIC测试条测量[具体生物]对阿莫西林(AMO)、四环素(TET)、克拉霉素(CLA)、甲硝唑(MNZ)、左氧氟沙星(LEV)和利福平(RIF)的最低抑菌浓度(MIC)。进行银染色以检查AlgC和GalU在LPS合成中的作用。进行溴化乙锭(EB)积累试验以评估[具体生物]菌株的外膜通透性。

结果

在[具体生物]中敲除[相关基因1]和[相关基因2]导致对AMO、MNZ、CLA、LEV和RIF的药物敏感性增加;而分别参与GDP-岩藻糖和UDP-半乳糖合成的[相关基因3]和[相关基因4]的敲除并未显著改变[具体生物]的药物敏感性。在临床耐药菌株中敲除[相关基因1]和[相关基因2]导致对所有抗生素(MNZ除外)的药物敏感性显著增加。当Δ[相关基因1]和Δ[相关基因2]的EB积累高于野生型和互补菌株时,其脂多糖A核心结构发生改变。

结论

UDP-葡萄糖可能通过维持脂多糖A核心结构和降低膜通透性,在增加对AMO、MNZ、CLA、LEV、TET和RIF的耐药性中起重要作用。AlgC和GalU可能作为降低临床分离株抗生素耐药性的潜在药物靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/624c/10066898/2f19f50fc1ba/IDR-16-1839-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验