Suppr超能文献

使用条件随机场和词嵌入进行处方提取。

Prescription extraction using CRFs and word embeddings.

作者信息

Tao Carson, Filannino Michele, Uzuner Özlem

机构信息

Department of Information Science, State University of New York at Albany, NY, USA.

Department of Computer Science, State University of New York at Albany, NY, USA.

出版信息

J Biomed Inform. 2017 Aug;72:60-66. doi: 10.1016/j.jbi.2017.07.002. Epub 2017 Jul 4.

Abstract

In medical practices, doctors detail patients' care plan via discharge summaries written in the form of unstructured free texts, which among the others contain medication names and prescription information. Extracting prescriptions from discharge summaries is challenging due to the way these documents are written. Handwritten rules and medical gazetteers have proven to be useful for this purpose but come with limitations on performance, scalability, and generalizability. We instead present a machine learning approach to extract and organize medication names and prescription information into individual entries. Our approach utilizes word embeddings and tackles the task in two extraction steps, both of which are treated as sequence labeling problems. When evaluated on the 2009 i2b2 Challenge official benchmark set, the proposed approach achieves a horizontal phrase-level F1-measure of 0.864, which to the best of our knowledge represents an improvement over the current state-of-the-art.

摘要

在医疗实践中,医生通过以非结构化自由文本形式撰写的出院小结来详细说明患者的护理计划,其中包括药物名称和处方信息。由于这些文档的书写方式,从出院小结中提取处方具有挑战性。手写规则和医学地名词典已被证明在此方面有用,但在性能、可扩展性和通用性方面存在局限性。相反,我们提出了一种机器学习方法,用于将药物名称和处方信息提取并整理成单独的条目。我们的方法利用词嵌入,并通过两个提取步骤来处理该任务,这两个步骤均被视为序列标注问题。在2009年i2b2挑战赛官方基准数据集上进行评估时,所提出的方法在水平短语级别的F1值达到了0.864,据我们所知,这代表了相对于当前最先进技术的改进。

相似文献

1
Prescription extraction using CRFs and word embeddings.使用条件随机场和词嵌入进行处方提取。
J Biomed Inform. 2017 Aug;72:60-66. doi: 10.1016/j.jbi.2017.07.002. Epub 2017 Jul 4.
5
Enhancing clinical concept extraction with contextual embeddings.利用上下文嵌入增强临床概念提取。
J Am Med Inform Assoc. 2019 Nov 1;26(11):1297-1304. doi: 10.1093/jamia/ocz096.
8
Entity recognition from clinical texts via recurrent neural network.基于循环神经网络的临床文本实体识别。
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67. doi: 10.1186/s12911-017-0468-7.

引用本文的文献

2
Extraction of Temporal Information from Clinical Narratives.从临床叙述中提取时间信息
J Healthc Inform Res. 2019 Feb 27;3(2):220-244. doi: 10.1007/s41666-019-00049-0. eCollection 2019 Jun.
7
Medical Information Extraction in the Age of Deep Learning.深度学习时代的医学信息抽取。
Yearb Med Inform. 2020 Aug;29(1):208-220. doi: 10.1055/s-0040-1702001. Epub 2020 Aug 21.

本文引用的文献

5
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
6
Extracting medication information from clinical text.从临床文本中提取药物信息。
J Am Med Inform Assoc. 2010 Sep-Oct;17(5):514-8. doi: 10.1136/jamia.2010.003947.
7
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验